Predictie van versnelde gewichtstoename in de eerste 6 levensmaanden bij ad term geboren kinderen.

Dr. Eva Cosyn

Promotor: Prof. Dr. Jean De Schepper
Co-promotoren: Prof. Mathieu Roelants
Dr. Nadine De Ronne

Verhandeling voorgedragen tot het behalen van de graad van ManaMa in de Jeugdgezondheidszorg

14 juni 2018
De scriptie die vandaag voor ligt, is er gekomen mede dankzij de hulp en ondersteuning van verschillende personen.

Een eerste woord van dank is voor mijn promotor, Prof. Dr. Jean De Schepper, die mij over de hele lijn begeleid heeft en duidelijk de richting van deze thesis bepaald heeft.

Daarnaast wil ik ook mijn copromotoren Prof. Mathieu Roelants en Dr. Nadine De Ronne bedanken, om mij steeds verder op weg te helpen en gerichte feedback te geven.

Maar ook Stefanie De Bruycker van de Cel Biostatistiek (UGent) verdient hier een woord van dank: ze heeft me geholpen om mijn SPSS kennis op cruciale topics terug bij te schaven.

Tot slot nog een speciaal woordje van dank voor mijn echtgenoot. Tijdens het schrijven van deze scriptie ben ik bevallen van ons tweede zoontje, wat er mede voor gezorgd heeft dat de combinatie familie – werk – studeren vaak een moeilijk parcours geweest is. Hij heeft me steeds gesteund en de zorg voor ons gezin op zich genomen op de momenten dat het nodig was.
1. Inhoud

1. Inhoud .. 1
2. Voorwoord .. 3
3. Inleiding .. 4
4. Doelstelling ... 6
5. Vraagstellingen ... 6
6. Literatuur .. 7
 A. Zoekstrategie .. 7
 B. Overgewicht bij jonge kinderen ... 8
 C. Overzicht van de belangrijkste factoren met invloed op de gewichtstoename in de eerste levensmaanden ... 9
 D. Predictiemodel ... 13
 E. Preventieve interventies ... 14
7. Methodologie ... 16
 A. Populatie omschrijving ... 16
 B. Gegevenscollectie .. 16
 C. Gegevenscodering .. 17
 D. Gegevensbewerking ... 17
 E. Gegevensanalyse .. 19
8. Resultaten .. 20
 A. Beschrijvende statistiek ... 20
 Overzicht van de demografische factoren ... 20
 Overzicht van voedingstypes in de eerste 26 weken .. 23
 Overzicht van de BMI z-score bij de geboorte, op leeftijd van 6 maanden en 2 jaar en verandering in BMI z-score ... 23
 B. Univariabele logistische regressie voor BMI z-score > 2 SD op 6 maanden 25
 C. Multivariabele logistische regressie voor BMI z-score > 2 SD op 6 maanden 27
 D. Predictiemodel voor een BMI z-score > 2 SD op 6 maanden 30
 Opbouwen van het predictiemodel .. 30
 Validatie van het predictiemodel .. 31
 E. Predictiemodel voor een BMI z-score op 2 jaar op basis van een BMI z-score op 6 maanden ... 31
9. Discussie .. 32
10. Samenvatting ..36
11. Referentielijst ...37
12. Bijlagen ...42
 Bijlage 1: Goedkeuring Ethisch comité ..42
 Bijlage 2: Goedkeuring Toezichtscommissie ...42
2. Voorwoord

Vandaag de dag gebeurt er binnen de dienstverlening in de preventieve zuigelingenbureaus van Kind en Gezin nog geen risico inschatting voor het ontwikkelen van overgewicht op jonge leeftijd en is er geen gerichte preventieve advisering voor deze at risk kinderen uitgewerkt. Nochtans worden in het jaarrapport van 2016 alarmerende cijfers omtrent overgewicht bij jonge kinderen gepubliceerd: 8,1% van de kinderen geboren in Vlaanderen in 2014 en opgevolgd via de consultatiebureaus heeft overgewicht op 2 jarige leeftijd.(1)

Mijn interesse werd dan ook snel gewekt toen Prof. De Schepper me als thesisonderwerp voorstelde om een predictiemodel te ontwikkelen om deze risicogroep vroegtijdig te kunnen opsporen. Dergelijk model kan een handig en duidelijk instrument zijn om tijdens de consulten bij Kind en Gezin risico zuigelingen vroegtijdig op te sporen; gevolgd door een gerichte preventieve aanpak bijvoorbeeld met een meer gerichte advisering over voeding en beweging aan de ouders.

Het doel van deze studie is dan ook een predictiemodel op te stellen voor een eenvoudige inschatting van het risico op een versnelde gewichtstoename tijdens de eerste 6 levensmaanden, zodat - indien nodig - een gericht preventie programma vroegtijdig kan worden opgestart. Dergelijk model dient op de eerst plaats een gemakkelijk bruikbaar instrument te zijn met als basis voorhanden parameters om het daadwerkelijk tijdens de consulten bij Kind en Gezin te kunnen gebruiken.
3. Inleiding

In België heeft 20% jongeren (2-17j) overgewicht en 7% kampt met obesitas of zwaarlijvigheid. Bovendien is de prevalentie van zwaarlijvigheid bij kinderen het hoogst bij 2 tot 4 jarigen (11% tov gemiddeld 7%). Op leeftijd 2 jaar heeft 8,1% van de kinderen in Vlaanderen geboren in 2014 overgewicht en is 1% obees.

Uit onderzoek blijkt dat zuigelingen met een versnelde gewichtstoename in de eerste 6 maanden een grotere kans hebben om op latere leeftijd obesitas te ontwikkelen. Preventieve acties zijn noodzakelijk gezien het behandelen van obesitas op oudere leeftijd vaak moeilijk verloopt.

Een versnelde gewichtstoename in de eerste 6 à 12 levensmaanden is niet alleen een risicofactor voor de ontwikkeling van obesitas op kinderleeftijd, maar ook voor insulineresistentie, dyslipemie en arteriële hypertensie in de adolescentie en op jongvolwassen leeftijd. De gevolgen voor de fysieke en mentale gezondheid zijn ernstig, en bovendien moeilijk te behandelen.

Verschillende studies tonen aan dat kinderen die reeds te zwaar zijn op jonge leeftijd een grote kans hebben om op volwassen leeftijd te vertonen.

Mogelijke preventieve maatregelen met bewezen effect tegen een versnelde gewichtstoename zijn o.m. een lagere eiwit aanbreng via de voeding, het aanhouden van exclusie borstvoeding in de eerste 6 maanden, en introductie van vaste voeding na de leeftijd van 4 maanden.

Een zo vroeg mogelijke risico inschatting voor een snelle gewichtstoename in de eerste levensmaanden is dus van belang om deze preventieve maatregelen gericht aan te bieden. Preventieve maatregelen kunnen aan alle kinderen aangeboden worden, en in deze studie proberen we die kinderen te identificeren die extra aandacht voor deze maatregelen verdienen. Bekende risicofactoren voor snelle gewichtstoename in de eerste levensmaanden zijn volgens literatuurgegevens: een hoog geboortegewicht, een hoge BMI van de moeder voor de zwangerschap, belangrijke gewichtstoename tijdens de zwangerschap, zwangerschapsdiabetes, roken van de moeder tijdens de zwangerschap, lagere socio-economische status, en etniciteit. Exclusieve borstvoeding tot 6 maanden is een beschermende factor.

De gewichtsevolutie wordt binnen de consultatiebureaus Kind en Gezin van nabij opgevolgd met standaard metingen op verschillende leeftijden (4w, 8w, 12w, 16w, 6m, 9m, 12m, 15m,
24m, 30m). Daarnaast zijn verscheidene van de bekende risicofactoren voor versnelde gewichtsevolutie; zoals geboortegewicht, type voeding, etnische origine van de moeder, opleiding van de moeder, en woonplaats beschikbaar in het digitaal kinddossier van Kind en Gezin (MIRAGE).

Een eenvoudig hanteerbaar predictiemodel gebaseerd op de gewichtstoename in de eerste levensmaanden en de voorhanden demografische risicofactoren kan dus een snelle risico-inschatting van een versnelde gewichtstoename toelaten.

In deze studie willen we nagaan welke demografische, biometrische en voedingsfactoren, die beschikbaar zijn in het registratiesysteem van Kind en Gezin, geassocieerd zijn met een versterkte gewichtstoename in de eerste 6 maanden, gedefinieerd als een versnelde BMI z-score toename, bij ad term geboren eenlingen met een opvolging in de consultatiebureaus van Kind en Gezin en of met deze determinanten een predictiemodel kan worden opgesteld.

De werkhypothese is dat een niet-Belgische origine, een laag opleidingsniveau van de moeder, een hoog geboortegewicht en kunstvoeding vanaf de geboorte in sterke mate geassocieerd zijn met een grotere gewichtstoename in de eerste 6 maanden.

In een tweede stap willen we nagaan in hoeverre de gewichtsstatus op 6 maanden de gewichtsstatus op 2 jaar voorspelt of met andere woorden hoe sterk de tracking van overgewicht is in de eerste 2 levensjaren.
4. Doelstelling

Het doel is om op basis van de biometrische gegevens in de eerste 6 levensmaanden en een aantal nutritionele en socio-demografische factoren een predictiemodel voor een versnelde gewichtstoename op de leeftijd van 6 maanden op te maken, zodat gerichte preventieve maatregelen vroegtijdig zouden kunnen aangeboden worden bij deze hoog risico groep. Hiervoor zullen de determinanten van een versnelde gewichtstoename, beschikbaar in het registratiesysteem van Kind en Gezin, worden geanalyseerd. Het tweede doel is de predictieve waarde van een bepaalde BMI score in de voorspelling van overgewicht (BMI z-score > 2 SD) na te gaan.

5. Vraagstellingen

De volgende vraagstellingen zullen worden nagegaan:

- Welke demografische, biometrische en voedingsfactoren zijn geassocieerd met een versnelde toename in gewicht en/of BMI tijdens de eerste 6 maanden bij ad term geboren eenlingen die door Kind en Gezin worden opgevolgd?
- Kan een predictiemodel voor een versterkte toename in BMI z-score in de eerste 6 maanden opgesteld worden met de gegevens binnen het informatiesysteem van Kind en Gezin?
- Is de gewichtsstatus op de leeftijd van 6 maanden een betrouwbare indicator voor de gewichtsstatus op 2 jaar?
6. Literatuur

Op basis van de Engelstalige wetenschappelijke literatuur willen we nagaan
- Welke factoren reeds onderzocht en gekend zijn die een verhoogd risico geven op een versnelde gewichtstoename in de eerste 6 levensmaanden.
- Welke predictiemodellen voor een versnelde gewichtstoename in de eerste 6 levensmaanden zijn beschreven?
- Welke preventieve acties reeds effectief gebleken zijn om overgewicht op jonge leeftijd te verminderen.

A. Zoekstrategie

1. Het cijfermateriaal is afkomstig uit bepaalde naslagwerken, namelijk
 - Het Kind van Vlaanderen 2016, Kind en Gezin \(^\text{(1)}\)
 - Evaluatierapport 2015 van het SPE (studiecentrum voor perinatale epidemiologie) \(^\text{(15)}\)
 - Gezondheidsenquête 2013 \(^\text{(2)}\)
 - World Obesity Federation (vroeger IOTF: International Obesity Task Force) \(^\text{(16)}\)

2. Verdere informatie is opgezocht via Pubmed.
 Twee filters werden gebruikt: ‘infant’ (0-23maanden) en ‘human’.
 Enkel Engelstalige artikels werden weerhouden.

 Welke factoren zijn reeds onderzocht en geven een verhoogd risico op een versnelde gewichtstoename in de eerste 6 levensmaanden.

 Search 1: “childhood obesity, BMI z-score, predictive factors” geeft 10 artikels waarvan 2 geselecteerd.
 Search 2: “Pediatric Obesity/prevention and control”[Mesh], risk factors” geeft 82 artikels waarvan 16 geselecteerd.

 Welke predictiemodellen voor een versnelde gewichtstoename in de eerste 6 levensmaanden zijn beschreven?

 Search 4: childhood obesity, prediction, risk score: geeft 29 artikels waarvan 5 geselecteerd werden.
Welke preventieve acties zijn effectief gebleken om overgewicht op jonge leeftijd te verminderen?

Reeds in search 2 werden artikels geselecteerd voor deze onderzoeksvraag.

3. Een extra zoekstrategie waren de relevante, gesuggereerde artikel-links op pubmed.

4. De laatste bron van informatie waren de geciteerde artikels in artikels die geselecteerd werden.

B. Overgewicht bij jonge kinderen

Steeds meer kinderen hebben overgewicht en obesitas, gekenmerkt door een overmatige vettopstapeling. Het is moeilijk een idee te hebben van de juiste prevalentie gezien verschillende definities en afkapwaardes bestaan voor overgewicht en obesitas. In 2004 schatte het IOTF (nu World Obesity Federation) dat 10% van de kinderen tussen 5 en 17 jaar overgewicht hadden en 2-3% obesitas hadden.16,17 De prevalentie verschilt grondig tussen verschillende landen en regio’s, gaande van <5% in Afrika en sommige delen van Azië tot >20% in Europa en >30% in Amerika en sommige landen in het Midden-Oosten.

Hoe kunnen we een overmatige lichaamsvet opstapeling bij kinderen op een eenvoudige manier beoordelen? In het kader van de vroege opsporing van overgewicht en obesitas kan vanaf de leeftijd van 2 jaar gebruik gemaakt worden van de Body Mass Index of BMI. Deze index wordt berekend als het gewicht gedeeld door het kwadraat van de lengte; uitgedrukt in kg/m², en is een maat voor de lichaamsmassa die ook de lengte in rekening brengt. Omwille van sterke veranderingen met de leeftijd kunnen de klassieke BMI-criteria voor overgewicht en obesitas bij volwassenen (resp. 25 en 30 kg/m²) niet worden toegepast bij kinderen.

Voor de interpretatie van de BMI bij kinderen (2-18 jaar) wordt daarom gebruik gemaakt van leeftijd- en geslacht specifieke referentiecurven.16 Op de Vlaamse groeicurven worden de BMI-waarden 25 en 30 kg/m² op 18 jaar (IOTF cutoff) geëxtrapoleerd naar de respectievelijke jongere leeftijden.18 De grenswaarde voor overgewicht op basis van de BMI ligt rond de 85e-88-percentiel, en die voor obesitas boven de 98-percentiel.

Het gebruik van de BMI onder de 2 jaar staat ter discussie, omwille van de sterke schommelingen in lichaamssamenstelling in deze periode.
Bij Kind en Gezin wordt voor kinderen onder de 2 jaar de **gewicht voor lengte (GVL) Z-score** gebruikt. De Z-score of de standaarddeviatiescore (SDS) geeft aan hoeveel een meting afwijkt van het gemiddelde, uitgedrukt in aantal standaarddeviaties.\(^{(19)}\) Op basis van de meetresultaten van de Vlaamse groeistudie 2004 werden naast gewicht voor leeftijd standaarden, ook gewicht voor lengte standaardcurves opgemaakt voor Vlaamse kinderen onder de 5 jaar.\(^{(20)}\) De WHO standaarden zijn gebaseerd op meetgegevens van een internationale populatie die moest voldoen aan zeer strenge inclusiecriteria en toont daarom eerder een ‘ideaal’ beeld van de groei bij kinderen. De WHO definieert overgewicht en obesitas tussen 0 en 5 jaar op basis van de BMI z-score en spreekt over 3 groepen: risico op overgewicht (>1SD), overgewicht (>2SD) en obesitas (>3SD).\(^{(20)}\)

Roy et al toonden aan dat er een hogere correlatie bestaat tussen een hoge BMI waarde op een leeftijd van 2 maanden en deze op 2 jaar dan met de gewicht voor lengte z-score op leeftijd 2 maanden.\(^{(21)}\) Zij stellen dus voor om op zeer jonge leeftijd (<6 maanden) eerder BMI waarden te gebruiken dan gewicht voor lengte, indien men het risico op overgewicht op latere leeftijd wil beoordelen. Uit deze studie blijkt dat kinderen met een hoge BMI en een normaal gewicht voor lengte toch een hoger risico kunnen hebben op overgewicht op latere leeftijd.

C. Overzicht van de belangrijkste factoren met invloed op de gewichtstoename in de eerste levensmaanden

Vroege identificatie van de relevante beïnvloedende factoren gecorreleerd aan overgewicht bij in de eerste levensmaanden is essentieel om er preventief te kunnen op inwerken. Deze factoren zijn bovendien erg verschillend tussen landen onderling.\(^{(22)}\) Enkel de BMI van de moeder voor de zwangerschap blijkt in alle landen een invloed te hebben op de vroege gewichtstoename.

Volgende factoren zijn onderwerp van deze studie:

1. **Geboortegewicht**

Glavin et al. constateerden dat het geboortegewicht een indicator kan zijn voor overgewicht op latere leeftijd.\(^{(23)}\) Reeds bij de geboorte was er een significant verschil in BMI SDS tussen de groep met overgewicht ten opzichte van de groep met een normaal gewicht op 8 jaar. Ook verschillende andere auteurs tonen een positief verband aan tussen het geboortegewicht en het gewicht latere leeftijd.\(^{(3, 21, 24)}\)

Een andere studie ziet hier dan weer geen statistisch verband.\(^{(25)}\) De auteurs van deze laatste studie vermoeden dat het positief verband, geconstateerd door de andere studies, eerder het gevolg is van een reeds hoger BMI bij de moeder voor de zwangerschap.
Taveras et al stelden vast dat een snelle toename in gewicht voor lengte tijdens de eerste 6 levensmaanden een betere voorspeller is voor overgewicht op 3 jarige leeftijd dan geboortegewicht.\(^7\)

Ook in de review van Weng et al worden hoog geboortegewicht en een snelle gewichtstoename tijdens het eerste levensjaar als risicofactoren geïdentificeerd.\(^26\)

2. **BMI van de moeder en de vader**

Bij de moeder zijn hogere BMI voor de zwangerschap, blootstelling aan nicotine, en een meer dan normale gewichtstoename tijdens de zwangerschap risicofactoren voor het ontwikkelen van overgewicht bij kinderen.\(^3,5\) Een meer dan normale gewichtstoename voornamelijk vroeg in de zwangerschap is heeft een grote invloed.\(^27\) Een hoge BMI van de moeder wordt gelinkt aan een intra-uteriene blootstelling aan overvoeding, welke op zijn beurt een invloed kan hebben op de lichaamssamenstelling in het postnatale leven.\(^28\)

Gegevens over de vader worden vaak niet meegenomen in studies. Reilly et al toonden echter aan dat er een verhoogd risico is op overgewicht indien één van de ouders een te hoge BMI heeft.\(^24\) Dit risico is nog groter indien beide ouders een te hoge BMI hebben. Dubois et al kunnen hetzelfde resultaat aantonen: het risico verdubbelt als één van de ouders overgewicht heeft en verdrievoudigd als beide ouders overgewicht hebben.\(^3\) Ook Weng et al tonen aan dat een hoge BMI van de vader (>30 kg/m\(^2\)) een risicofactor is.\(^28\) Het verband tussen ouderlijke overgewicht en overgewicht bij de kinderen kan door genetische als door levensstijl factoren wordt beïnvloed.\(^26\) Men moet zich ook de bedenking maken dat in studies de BMI (gewicht en lengte) vaak gevraagd wordt aan de ouders en niet wordt gemeten. Hier kan dus zeker een foutmarge op zitten (recall bias).

3. **Rookgedrag van de moeder tijdens de zwangerschap**

De review van Weng et al. toont aan dat kinderen van moeders die tijdens de zwangerschap regelmatig gerookt hebben 47% meer kans hebben op overgewicht op jonge leeftijd.\(^26\) Ook Dubois et al kunnen aantonen dat de kans 80% hoger ligt als de moeder gerookt heeft tijdens de zwangerschap. Deze kinderen hebben een grotere toename in gewicht na de geboorte onafhankelijk van het geboortegewicht dan de kinderen van moeders die niet gerookt hebben.\(^3\)

4. **Socio economische status**

De socio-economische status is geassocieerd met het risico op overgewicht in de jonge kinderjaren, maar dit verband is verschillend tussen geïndustrialiseerde en niet-
geïndustrialiseerde landen. In geïndustrialiseerde ‘rijke’ landen is er een verband tussen een lagere socio-economische status en een hoger risico op overgewicht. In de (armere) ontwikkelingslanden is dit een omgekeerd verband (17, 29). Roy et al. bevestigen in een Amerikaans onderzoek dat een lage socio-economische status vastgesteld op 2 maanden leeftijd (gebaseerd op toegang tot Medicaid) een hoger risico geeft op overgewicht op 2 jarige leeftijd (21). Een mogelijke verklaring is dat kinderen van ouders met een hogere opleiding meer borstvoeding krijgen, wat op zich een lager risico inhoudt op overgewicht (zie punt 8). (1) In het Europees onderzoek van Koletzko et al. ziet men dat in de groep van exclusief borstgevoede kinderen de ouders meestal een hogere opleiding hebben. (9) Ook Dubois et al. onderzochten deze factor aan de hand van het maandelijkse gezinsinkomen. Kinderen in een gezin met een laag inkomen hebben een hogere kans op overgewicht op 4,5 jaar. (3)

5. Woonplaats
Wang et al. toonden ook aan dat het risico op overgewicht afhankelijk is van de woonplaats. In de geïndustrialiseerde landen is er een groter risico op overgewicht bij jonge kinderen indien zij ruraal wonen. Bij ontwikkelingslanden is er een groter risico indien de woonplaats stedelijk is. Er is voornamelijk een probleem van overgewicht in landen waar een shift bezig is van ondervoeding naar overvoeding. (29)

6. Etniciteit

7. Hoog eiwitgehalte van flesvoeding
Een hogere eiwitname tijdens de eerste 2 levensjaren is geassocieerd met een hoger risico op overgewicht. In de CHOP-studie (CHILDhood Obesity Programming) toont men aan dat een hogere eiwitname de secretie van IGF-1 verhoogt, met een mogelijk gevolg op de vetcelproliferatie, wat leidt tot een versnelde lengtegroei en toegenomen vetweefsel. (9) Er werden 2 groepen vergeleken: flesvoeding met hoog eiwitgehalte ten opzichte van flesvoeding met laag eiwitgehalte. Er was een significante lagere BMI
evolutie in de eerste 2 jaar bij de zuigelingen initiële gevoed met flesvoeding met een lager eiwitgehalte. Bovendien werd er geen verschil in lengtegroei vastgesteld tussen de twee groepen, zo is het verschil in BMI volledig te verklaren door een verschil in gewicht.

Ook Günther et al onderzochten het verband tussen een hoge eiwitintake in de eerste levensjaren en het risico op overgewicht.\(^{10}\) Een hogere eiwitintake op 12 maanden en op 18-24 maanden zijn geassocieerd met een hogere BMI en percentage vetmassa op 7 jaar. De invloed van complementaire voeding wordt op deze manier aangetoond, vooral de eiwitintake op het moment van introductie van vaste voeding en de overgang naar een ‘gewoon’ voedingspatroon (=mee-eten aan tafel) is belangrijk.

Het geven van flesvoeding met grotere flessen is geassocieerd met een grotere gewichtstoename dan het voeden met kleinere flessen.\(^{31}\)

8. **Langdurig geven van exclusieve borstvoeding**

Verschillende studies onderzochten de relatie tussen exclusieve borstvoeding en de duur ervan met het risico op overgewicht. In de review van Weng et al wordt aangetoond dat borstvoeding tijdens het eerste levensjaar (exclusief of niet) een vermindering van 15% geeft op de kans op overgewicht op jonge leeftijd; en dus protectief werkt.\(^{26}\) Borstvoeding blijkt een licht beschermend effect te hebben, en dit effect blijkt wel gebonden met de duur van toediening.\(^{11,12,32}\) Per maand extra men borstvoeding geeft (niet enkel exclusief maar ook partieel), daalt het risico met 4%, met een plateau op leeftijd 9 maanden. De WHO raadt dan ook aan om exclusieve borstvoeding te geven zeker tot de leeftijd 6 maanden.\(^{33}\)

Ook Gunnarsdottir et al toonden aan dat exclusieve borstvoeding langer dan 2 maanden een minder hoge gewichtstoename veroorzaakt op de leeftijd van 1 jaar.\(^{25}\)

Het is vaak moeilijk het exacte effect van exclusieve borstvoeding te kennen gezien andere confounders, zoals bijvoorbeeld het socio-economisch niveau en etniciteit, hier ook een effect op kunnen hebben. Ehrenthal et al toonden aan dat exclusieve borstvoeding gedurende 2 maanden een beschermende factor is bij blanken maar een net een hoger risico geeft op overgewicht bij de zwarte bevolking.\(^{34}\) Dit kan te maken hebben met etnisch gebonden voedingsgewoonten en gezondheidsgedrag.

9. **Introductie vaste voeding voor de leeftijd van 4 maanden**

Het starten met vaste voeding voor de leeftijd van 4 maanden geeft een verhoogd risico op overgewicht (RR=1,18) en op obesitas (RR=1,33); in vergelijking met starten op leeftijd tussen 4 en 6 maanden.\(^{13}\) Een andere review besluit dat het effect minder
duidelijk is, maar geeft wel dezelfde conclusie.\(^{(35)}\) Ook in de review van Weng et al wordt deze risicofactor bevestigd, al is er minder evidentie voor.\(^{(26)}\)

10. Pariteit

Dubois et al gaan op zoek naar determinanten van overgewicht op leeftijd 5 maanden en op 4,5 jaar waarbij pariteit niet significant is \(p=0.33\).\(^{(3)}\) Reilly et al doen een gelijkaardige analyse, en ook daar komt pariteit er niet significant uit.\(^{(24)}\) Weng et al konden in hun review door het te weinig aantal studies niet bevestigen dat er een verband is tussen pariteit en overgewicht bij kinderen.\(^{(26)}\)

D. Predictiemodel

Verschillende predictiemodellen zijn reeds voorgesteld en onderzocht in de literatuur. Vaak worden dezelfde factoren gebruikt in de predictie van overgewicht. De klinische bruikbaarheid, de behaalde sterkte van het uiteindelijke model, en de doelpopulatie zijn wel sterk verschillend tussen de gepubliceerde modellen.

Weng et al onderzochten verschillende factoren die een rol spelen in de gewichtstoename bij de zuigeling en het jonge kind met de bedoeling een predictiemodel op te stellen om overgewicht op driejarige leeftijd te voorspellen. De sterkste risicofactoren waren geslacht \(v>m\), een hoog geboortegewicht (>3,81 kg), een snelle gewichtstoename in het eerste levensjaar (>0.67 SDS in de gewicht voor leeftijd z-score), een hoge BMI van de moeder voor de zwangerschap (>25 kg/m\(^2\)), een hoge BMI van de vader (>30 kg/m\(^2\)), roken tijdens de zwangerschap en geen borstvoeding in het eerste levensjaar.\(^{(28,36)}\) Deze factoren includeerden ze dan ook in hun IROC (Infant Risk of Obesity Checklist) model. De IROC is ontwikkeld om kinderen at risk te identificeren vanaf de leeftijd van 4 maanden. Het IROC model werd in Groot-Brittannië reeds uitgeprobeerd via een interactief digitaal programma (ProAsk) op een tablet. Ouders kunnen dan antwoorden op de vragen (de risicofactoren) waarna de hulpverlener op basis van het resultaat gepast advies kan geven.\(^{(37)}\)

Het grote voordeel in dit model is het includeren van snelle gewichtstoename, welke een van de sterkste indicatoren is. Dit is niet mogelijk indien men een predictiemodel hanteert dat bij pasgeborenen van toepassing is zoals bij Morandi et al.\(^{(38)}\) In dit model is voornamelijk de BMI van de ouders van belang.

Ook Robson et al concludeerden dat voornamelijk de BMI van de moeder voor de zwangerschap, het geboortegewicht en de gewichtsevolutie de eerste 6 maanden (z-score) doorslaggevende risicofactoren zijn.\(^{(39)}\) Hun model is echter gebaseerd op een cohorte
Latino’s. Druet et al gebruiken ongeveer dezelfde factoren (gewichtsevolutie het eerste levensjaar) in hun prediciemodel en voegen er nog het geslacht aan toe. In dit model is ook de gewichtsevolutie een belangrijke voorspeller van overgewicht.\(^{14}\)

Levine et al ontwikkelden een eenvoudig score model: de ‘Obesity Risk Tool’ (ORT) met volgende factoren: BMI van de ouders, vroege snelle gewichtstoename, etniciteit, geboortegewicht en opleidingsniveau van de moeder. Een score wordt gegeven aan elk onderdeel waardoor er met de totaalscore een risico inschatting verkregen wordt voor overgewicht op 5 jaar. Het model is nog niet getest geworden in de praktijk.\(^{14}\)

Het CORE (= Childhood Obesity Risk Evaluation) model is wel onderzocht en voorspelt het risico op obesitas bij kinderen leeftijd 6 tot 15 jaar.\(^{41}\) Hier worden geslacht, BMI van de moeder voor de zwangerschap, mate van gewichtstoename van het kind tijdens het eerste 6 maanden, roken tijdens de zwangerschap en opleiding van de moeder meegenomen. Dit model is ontwikkeld op basis van een steekproef Griekse jongeren.

E. Preventieve interventies

Preventieve interventies zijn een noodzakelijk vervolgstuk bij het gebruik van een prediciemodel en worden in het kort besproken. Hoe jonger de leeftijd van het kind wanneer men ingrijpt met preventieve acties (leeftijd van de ouders), hoe beter de resultaten op lange termijn.\(^{28}\)

In de review van Redsell et al worden de mogelijke interventies, zowel prenataal als tijdens de eerste 2 levensjaren besproken.\(^{42}\)

- Leefstijladvies en voedingsadvies.
- Het ‘opvoeden’ van ouders: responsiviteit van de ouder/verzorger en controle over het eetgedrag van het kind.
- Fysieke activiteit verhogen, sedentair gedrag verminderen.
- Promotie van langdurige borstvoeding
- Promotie van kunstvoeding met lager eiwitgehalte

Educatie van de ouders is voor de auteurs een zeer belangrijke component in de preventie van overgewicht bij kinderen onder de leeftijd van 2 jaar. ‘Responsive feeding’ is hier vooral belangrijk: ouders moeten ingaan op honger- en verzadigingssignalen van het kind. Borstvoeding bleek in deze studie geen rechtstreeks effect te hebben op het gewicht van een kind voor de leeftijd van 2 jaar, maar dit kan etnisch verschillend zijn. Aanvullend is het volgens
de auteurs noodzakelijk om gezonde voedingsgewoonten te promoten bij gezinnen met bepaalde culturele achtergrond.\(^{(34)}\)

Blake-Lamb et al ging op zoek naar succesvolle interventies ter preventie van overgewicht bij kinderen. Ze identificeerden 26 interventies waarvan slechts 9 effectief waren. Interventies gericht op het gezin zijn volgens hen het meest succesvol. Begeleiding en advies aan de moeder tijdens de zwangerschap gaf geen verminderd risico op overgewicht voor de zuigeling. Educatie via huisbezoeken omtrent voeding voor de zuigeling gaf wel een verminderd risico.\(^{(43)}\)

Het HAPPY (=Healthy and Active Parenting Programme for early Years) preventie programma concentreert zich op opvoedingsadvies pre- en postnataal. Dit door middel van groepsessies met leefstijl- en voedingsadvies voor moeder en kind, en promotie van exclusieve borstvoeding tot de leeftijd van 6 maanden. Belangrijk voor de uitvoering is dat de sessies kunnen doorgaan op een plaats die goed te bereiken is, met parkeergelegenheid en eventueel opvang voor de kinderen. Uit de studie bleek ook het belang van aanwezigheid op de eerste sessie. Als vrouwen op de eerste sessie aanwezig waren, was de kans groter dat ze de reeks vervolledigden.\(^{(44)}\)
7. Methodologie

A. Populatie omschrijving

Voor het onderzoek werden de gegevens van alle pasgeboren eenlingen, geboren in de eerste helft van 2015, die door Kind en Gezin werden opgevolgd, en voor wie minimaal de lengte en het gewicht bij de geboorte, en op 6 weken en/of 2 maanden en op 6 maanden gekend is, opgevraagd. De aanvraag voor het bekomen van deze gegevens werd zowel door de directie van Kind en Gezin, het Ethisch comité van UZ Brussel (bijlage 1) als de Vlaamse Toezichtscommissie (bijlage 2) goedgekeurd.

De volgende inclusie en exclusie criteria werden voor de gegevensverwerking gebruikt:
Inclusiecriteria:
- Eenlingen, ad term (≥37 en <41 weken gestatie) geboren tussen 1/1/2015 – 30/6/2015
- Minimaal gekend: geboortegewicht en geboortelengte en een contactmoment op leeftijd 6 maanden

Exclusiecriteria:
- Bekende congenitale aandoening
- Bekende chronische ziekte

B. Gegevenscollectie

Volgende gegevens, die geregistreerd worden tijdens het eerste consult, werden vanuit de database van Kind en Gezin, opgeladen in een Excel bestand:
- geslacht
- geboortegewicht
- geboortelengte
- nationaliteit van de moeder
- opleidingsniveau van de moeder
- pariteit
- postcode
- VRIND-indeling
- provincie
- type voeding
De volgende gegevens werden tijdens de opvolgconsulten tot en met de leeftijd van 28 maanden overgebracht: beschikbare gewichten en lengtes en type voeding.

C. Gegevenscodering

Het type voeding wordt geregistreerd als flesvoeding/borstvoeding/gemengd op de volgende tijdstippen: 24 u, 6 dagen, 6 weken, 12 weken en 26 weken. In de multiregressie analyse werd de voeding op 26 weken evenwel gecodeerd als een dichotome variabele: exclusieve ten opzichte van niet exclusieve (of geen) borstvoeding (volgens de WHO aanbevelingen naar duur van exclusieve borstvoeding).

De nationaliteit van de moeder bij haar eigen geboorte wordt gebruikt als proxy voor de herkomst. (Tabel 3) Deze werden gegroepeerd in vier categorieën om een werkbaar model te kunnen opstellen. België is één categorie, Maghreb en Turkije worden samengenomen. Ook Oost-Europa en Ex-Oostblok (niet EU) worden samengenomen als één categorie. Alle andere landen worden samengenomen in de ‘Overige’ categorie.

Het opleidingsniveau wordt opgedeeld in 4 groepen: laag geschoold (BuSO 1e en 2e graad of lager secundair, lager onderwijs of geen diploma, secundair onderwijs 1e en 2e graad of lager secundair en beroepsonderwijs 6e jaar), hoger secundair (BuSO 3e graad of hoger secundair, secundair onderwijs 3e graad of hoger secundair en beroepsonderwijs 7e jaar), hoger onderwijs en ongekend (=niet ingevuld, niet van toepassing of onbekend).

D. Gegevensbewerking

De biometrische gegevens werden omgezet naar z-scores volgens de WHO referentie en de Vlaamse groeistudie referentie. In deze studie gebruiken we de z-scores volgens de WHO referentie. De belangrijkste outcome parameters zijn de BMI z-score op 6 maanden en op 24 maanden.
Outliers voor gewicht, lengte en BMI werden geïdentificeerd op basis van hun afwijking met de referentie. Als afkapwaarde werd een z-score > +5 of < -5 gebruikt. Dergelijke extreme waarden zijn waarschijnlijk meet- en/of registratiefouten en worden dus niet weerhouden in de verwerking.

De verkregen dataset bevat de gegevens van 32.579 kinderen (16.538 jongens en 16.041 meisjes), waarvan 30.842 met minimaal 1 meetpunt na de geboorte. In totaal werden 300.121 meetpunten (=contactmomenten, inclusief de geboorte) overgebracht.

Eerst en vooral wordt een ‘cleaning’ van de dataset uitgevoerd. In een eerste stap worden de gegevens van 43 kinderen met een sterk afwijkende geboorte biometrie (geboortelengte z-score, geboortegewicht z-score, geboorte-BMI z-score, geboortegewicht-voor-geboortelengte z-score) uit de databank verwijderd. Dit resulteert in het verwijderen van 355 meetpunten (contactmomenten).

In een tweede stap worden 100 meetpunten verwijderd op basis van een sterk afwijkende lengte voor leeftijd z-score, gewicht voor leeftijd z-score, BMI z-score en gewicht-voor-lengte z-score in de opvolgconsulten. Dat brengt het totaal op 505 meetpunten die uit de dataset verwijderd worden, wat resulteert in 299.616 meetpunten voor in totaal 30.799 kinderen.

In een derde stap wordt gekeken van hoeveel kinderen het geboortegewicht en/of de geboortelengte niet gekend was en hoeveel kinderen geen contactmoment hebben op leeftijd 6 maanden. Van 2829 kinderen bleek het geboortegewicht en/of geboortelengte niet gekend, en van 27.970 kinderen zijn wel beide geboorteparameters gekend.

In een vierde stap worden de meetpunten bekomen tussen de leeftijd 175 tot en met 265 dagen (contactmoment leeftijd 6 maanden) (zie Figuur 1). In deze periode zijn 23.456 meetpunten voorhanden. Na verwijderen van dubbele registraties, blijven er in totaal 22153 over, welke dus de uiteindelijke onderzoeksgroep vormt voor deze studie.
Noteer dat op de leeftijd van 2 jaar (24 maanden (+/-) 10 weken) meetgegevens van lengte en BMI beschikbaar zijn voor 18.428 kinderen.

E. Gegevensanalyse

De gegevens werden geanalyseerd met het statische programma SPSS (versie 25).

Voor vergelijkende analyses werd de t-toets met gelijke of ongelijk variantie naargelang de uitkomst van een Levene’s toets voor gelijke variantie uitgevoerd. Voor de multivariaat logische regressie werd de Backward Elimination volgens het Wald criterium gebruikt. Als grens voor significantie wordt $p<0,05$ aangenomen.

In het opstellen van dit regressie model werd een voorkeur gegeven aan geboortegewicht in plaats van geboorte BMI gezien de OR in de enkelvoudige logistische regressie groter is voor geboortegewicht en beide zeer sterk gecorreleerd zijn. De VRIND categorie wordt weerhouden en niet de provincie als determinant voor woonplaats effect analyse om een grotere generalisatie van het model te bekomen. Van de verschillende voedingsfactoren die haast per definitie overlappen (bv. Borst voeding op een bepaalde leeftijd impliceert quasi zeker ook borstvoeding op alle voorgaande leeftijden), werd gekozen voor ‘voeding op 26W’ als indicator voor (langdurige) borstvoeding; dit op basis van een test naar multicollineariteit tussen de verschillende tijdstippen.

Voor opbouw van het predictie model werd de dataset ‘at random’ opgesplitst in een deel (70%) voor de ontwikkeling van het model en een ander deel (30%) om het model te valideren.
8. Resultaten

A. Beschrijvende statistiek

Overzicht van de demografische factoren

Woonplaats: Het grootste aantal kinderen komt uit de provincies Antwerpen en Oost-Vlaanderen. Het grootste aantal kinderen wonen in kleine steden of overgangsgebied. (Tabel 1 en Tabel 2)

<table>
<thead>
<tr>
<th>Provincie</th>
<th>Aantal</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antwerpen</td>
<td>6722</td>
<td>30,3%</td>
</tr>
<tr>
<td>Brussel Hfst. Gew.</td>
<td>549</td>
<td>2,5%</td>
</tr>
<tr>
<td>Limburg</td>
<td>3050</td>
<td>13,8%</td>
</tr>
<tr>
<td>Oost-Vlaanderen</td>
<td>4807</td>
<td>21,7%</td>
</tr>
<tr>
<td>Vlaams-Brabant</td>
<td>3306</td>
<td>14,9%</td>
</tr>
<tr>
<td>Wallonië + overige</td>
<td>171</td>
<td>0,8%</td>
</tr>
<tr>
<td>West-Vlaanderen</td>
<td>3548</td>
<td>16,0%</td>
</tr>
<tr>
<td>Totaal</td>
<td>22153</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabel 1: Verdeling onderzoeksgroep volgens provincie

<table>
<thead>
<tr>
<th>VRIND (vereenvoudigd)</th>
<th>VRIND</th>
<th>Aantal</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrumsteden</td>
<td>Centrumsteden</td>
<td>3070</td>
<td>13,9%</td>
</tr>
<tr>
<td>Grootsteden</td>
<td>Grootsteden + overige Brusselse gemeenten</td>
<td>3878</td>
<td>17,5%</td>
</tr>
<tr>
<td>Kleinere steden</td>
<td>Kleinstedelijke provinciaal + structuurondersteunende steden</td>
<td>4527</td>
<td>20,4%</td>
</tr>
<tr>
<td>Overgangsgebied</td>
<td>Overgangsgebied</td>
<td>4563</td>
<td>20,6%</td>
</tr>
<tr>
<td>Platteland</td>
<td>Platteland</td>
<td>3182</td>
<td>14,4%</td>
</tr>
<tr>
<td>Stedelijke rand</td>
<td>Grootstedelijke rand + regionaal stedelijke rand + stedelijk gebied rond Brussel</td>
<td>2762</td>
<td>12,5%</td>
</tr>
<tr>
<td>Ongekend+Wallonië</td>
<td>Overige Waalse gemeenten + Ongekend</td>
<td>171</td>
<td>0,8%</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td>22153</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabel 2: Verdeling onderzoeksgroep volgens (vereenvoudigde) VRIND categorie
Nationaliteit van de moeder: De meerderheid van de kinderen heeft een moeder met een Belgische nationaliteit. (Tabel 3)

<table>
<thead>
<tr>
<th>Nationaliteit van de moeder</th>
<th>Aantal</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>België</td>
<td>16020</td>
<td>72,3%</td>
</tr>
<tr>
<td>Oost-Europa en Ex-Oostblok</td>
<td>1427</td>
<td>6,4%</td>
</tr>
<tr>
<td>Maghreb+Turkije</td>
<td>1734</td>
<td>7,8%</td>
</tr>
<tr>
<td>Overige</td>
<td>2972</td>
<td>13,4%</td>
</tr>
<tr>
<td>Totaal</td>
<td>22153</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabel 3: Verdeling onderzoeksgroep volgens nationaliteit van de moeder

Opleiding van de moeder bij de geboorte: De meerderheid van de kinderen heeft een moeder met een diploma hoger onderwijs. (Tabel 4)

<table>
<thead>
<tr>
<th>Opleiding van de moeder</th>
<th>Aantal</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoger onderwijs</td>
<td>11702</td>
<td>52,8%</td>
</tr>
<tr>
<td>Hoger secundair</td>
<td>6526</td>
<td>29,5%</td>
</tr>
<tr>
<td>Laag geschoold</td>
<td>2997</td>
<td>13,5%</td>
</tr>
<tr>
<td>Ongekend</td>
<td>928</td>
<td>4,2%</td>
</tr>
<tr>
<td>Totaal</td>
<td>22153</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabel 4: Verdeling onderzoeksgroep volgens opleiding van de moeder

Pariteit: De meerderheid van de kinderen is het eerste kind van de moeder. (Tabel 5)

<table>
<thead>
<tr>
<th>Pariteit</th>
<th>Aantal</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9899</td>
<td>45%</td>
</tr>
<tr>
<td>2</td>
<td>8186</td>
<td>37%</td>
</tr>
<tr>
<td>3</td>
<td>2739</td>
<td>12%</td>
</tr>
<tr>
<td>4 of meer</td>
<td>1263</td>
<td>6%</td>
</tr>
<tr>
<td>Ongekend</td>
<td>66</td>
<td>0%</td>
</tr>
<tr>
<td>Totaal</td>
<td>22153</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabel 5: Verdeling onderzoeksgroep volgens pariteit
Geboortegewicht: Het mediane geboortegewicht bedraagt 3,395kg. Voor de meisjes is dit 3,325kg en voor de jongens 3,460kg. (Figuur 2)

![Figuur 2: Verdeling geboortegewicht binnen de onderzoeksgroep](image)

Geboortelengte: Figuur 3 toont analoog de verdeling van de geboortelengte. De mediane geboortelengte is 50,0cm. Voor jongens is dit 50,5cm en voor meisjes is dit 50,0cm.

![Figuur 3: Verdeling geboortelengte binnen de onderzoeksgroep](image)
Overzicht van voedingstypes in de eerste 26 weken

Figuur 4 geeft de voedingstype verdeling op de tijdstippen 24u, 6 dagen, 6 weken, 12 weken en 26 weken van borstvoeding, kunstvoeding of gecombineerde voeding (= BV+KV, BV+KV+vaste voeding, BV+vaste voeding). Het aandeel exclusieve borstvoeding zakt van 78% op 24u tot 11% op 26 weken.

![Figuur 4: Voedingsevolutie van de onderzoeksgroep](image)

Overzicht van de BMI z-score bij de geboorte, op leeftijd van 6 maanden en 2 jaar en verandering in BMI z-score

Er zijn 441 kinderen (2%) die een geboorte BMI z-score >2 hebben ten opzichte van 211 kinderen (1%) die een geboortegewicht voor geboortelengte z-score >2 hebben. Van deze 211 kinderen zijn er 172 (82%) die ook een BMI z-score >2 hebben bij de geboorte. Aan beide criteria voldoen dus in totaal 172 kinderen (0,8%).

Van de 441 kinderen met een BMI z-score >2 bij de geboorte hebben er 364 een meting op de leeftijd van 2 jaar. Op 6 maanden hebben 30 (6,8%) van de pasgeboren met een BMI z-score >2 nog steeds een BMI z-score >2 en op 2 jaar zijn dat er 42 (11,5%).

Op de leeftijd van 6 maanden (175 tem 265 dagen) heeft 721 (3,3%) van de zuigelingen een BMI z-score >2 (zie Tabel 6). De prevalentie van de kinderen met een BMI z-score >1 op de leeftijd van 6 maanden is daarentegen 18,5% (4049 van de 22.153 kinderen).
Er zijn 511 (2,8%) kinderen die een BMI z-score >2 hebben op de gemiddelde leeftijd van 2 jaar (24m +/- 10 weken), terwijl 16% (2.967 van de 18.428 kinderen) een score >1 SD heeft.

<table>
<thead>
<tr>
<th>Geboorte</th>
<th>6 maanden</th>
<th>2 jaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Totaal</td>
<td>22153</td>
<td>100</td>
</tr>
<tr>
<td>At risk</td>
<td>3087</td>
<td>13.9</td>
</tr>
<tr>
<td>Overgewicht</td>
<td>441</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Tabel 6: Prevalente binnen de onderzoeksgroep van kinderen "at risk" en "overgewicht"

Van de 721 kinderen met overgewicht op leeftijd 6 maanden zijn er 566 (78,5%) die ook een meetmoment hebben op 2 jarige leeftijd. Van deze 566 kinderen zijn er 141 kinderen die nog steeds overgewicht hebben op tweejarige leeftijd. Anders gesteld, 25% van de kinderen die op leeftijd 6 maanden overgewicht hebben, hebben dit nog steeds op de leeftijd van 2 jaar (Tabel 7).

Van de 4094 kinderen at risk voor overgewicht (BMI z score > 1 SD) op leeftijd 6 maanden zijn er 3349 (81,8%) die ook een meetmoment hebben op 2 jarige leeftijd. Van deze 3349 kinderen zijn er 1483 kinderen die nog steeds at risk zijn op tweejarige leeftijd. Anders gesteld, 44,3% van de kinderen die op leeftijd 6 maanden at risk zijn, zijn dit nog steeds op de leeftijd van 2 jaar. Van deze 3349 kinderen zijn er 360 kinderen (10,7%) die van 'at risk' naar overgewicht (>2SD) evolueren op 2 jaar.

Interessant is ook dat van de 15079 kinderen zonder overgewicht of 'at risk' (SD<1) op leeftijd 6 maanden, er 1484 kinderen (9,8%) evolueren naar 'at risk' waarvan 151 kinderen (1%) evolueren naar overgewicht.

<table>
<thead>
<tr>
<th>6 maanden</th>
<th>2 jaar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normaal gewicht (SD<1)</td>
</tr>
<tr>
<td>Normaal gewicht (SD<1)</td>
<td>13595</td>
</tr>
<tr>
<td>At risk (SD>1)</td>
<td>1681</td>
</tr>
<tr>
<td>Overgewicht (SD>2)</td>
<td>185</td>
</tr>
<tr>
<td>Totaal</td>
<td>15461</td>
</tr>
</tbody>
</table>

Tabel 7: Evolutie tussen 6maanden en 2 jaar van de prevalentie van "at risk" en "overgewicht" in de onderzoeksgroep
B. Univariabele logistische regressie voor BMI z-score > 2 SD op 6 maanden

In Tabel 8 wordt naast de prevalentie van overgewicht (BMI z-score>2SD) op leeftijd 6 maanden per variabele, de resultaten van de regressie analyse met de odds ratio (OR) en het betrouwbaarheidsinterval (95%CI) weergegeven.

<table>
<thead>
<tr>
<th>Potentiële Risicofactoren</th>
<th>Prevalentie overgewicht (%)</th>
<th>OR</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>Likelihood P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geslacht</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,64</td>
</tr>
<tr>
<td>Mannelijk</td>
<td>3,2</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vrouwelijk</td>
<td>3,3</td>
<td>1,06</td>
<td>0,91</td>
<td>1,22</td>
<td></td>
</tr>
<tr>
<td>Geboortegewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,001</td>
</tr>
<tr>
<td>BMI bij geboorte</td>
<td>2,28</td>
<td>1,94</td>
<td>2,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI z-score>2 bij geboorte</td>
<td>1,47</td>
<td>1,38</td>
<td>1,56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nationaliteit moeder</td>
<td></td>
<td><0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>België</td>
<td>2,2</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maghreb + Turkije</td>
<td>7,2</td>
<td>3,42</td>
<td>2,77</td>
<td>4,22</td>
<td><0,001</td>
</tr>
<tr>
<td>Oost-Europa en Ex-Oostblok</td>
<td>4,5</td>
<td>2,07</td>
<td>1,57</td>
<td>2,71</td>
<td><0,001</td>
</tr>
<tr>
<td>Overige</td>
<td>5,9</td>
<td>2,77</td>
<td>2,3</td>
<td>3,34</td>
<td><0,001</td>
</tr>
<tr>
<td>Opleiding moeder</td>
<td></td>
<td><0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoger Onderwijs</td>
<td>2,0</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoger Secundair</td>
<td>4,0</td>
<td>2,05</td>
<td>1,71</td>
<td>2,45</td>
<td><0,001</td>
</tr>
<tr>
<td>Laag geschoold</td>
<td>5,5</td>
<td>2,85</td>
<td>2,33</td>
<td>3,49</td>
<td><0,001</td>
</tr>
<tr>
<td>Ongekend</td>
<td>5,9</td>
<td>3,06</td>
<td>2,26</td>
<td>4,14</td>
<td><0,001</td>
</tr>
<tr>
<td>Pariteit</td>
<td></td>
<td><0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2,7</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3,1</td>
<td>1,17</td>
<td>0,99</td>
<td>1,4</td>
<td>0,07</td>
</tr>
<tr>
<td>3</td>
<td>4,4</td>
<td>1,67</td>
<td>1,34</td>
<td>2,08</td>
<td><0,001</td>
</tr>
<tr>
<td>4 of meer</td>
<td>6,3</td>
<td>2,44</td>
<td>1,88</td>
<td>3,15</td>
<td><0,001</td>
</tr>
<tr>
<td>Ongekend</td>
<td>4,5</td>
<td>1,74</td>
<td>0,54</td>
<td>5,57</td>
<td>0,35</td>
</tr>
<tr>
<td>Voeding</td>
<td></td>
<td><0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borstvoeding</td>
<td>3,5</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gemengde voeding</td>
<td>4,5</td>
<td>1,29</td>
<td>0,74</td>
<td>2,26</td>
<td>0,37</td>
</tr>
<tr>
<td>Kunstvoeding</td>
<td>2,2</td>
<td>0,63</td>
<td>0,51</td>
<td>0,78</td>
<td><0,001</td>
</tr>
<tr>
<td>Ongekend</td>
<td>0,0</td>
<td>0</td>
<td></td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>6D</td>
<td></td>
<td>0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borstvoeding</td>
<td>3,4</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gemengde voeding</td>
<td>4,2</td>
<td>1,24</td>
<td>0,97</td>
<td>1,59</td>
<td>0,09</td>
</tr>
<tr>
<td>Kunstvoeding</td>
<td>2,5</td>
<td>0,72</td>
<td>0,59</td>
<td>0,87</td>
<td>0,001</td>
</tr>
<tr>
<td>Ongekend</td>
<td>2,2</td>
<td>0,64</td>
<td>0,09</td>
<td>4,65</td>
<td>0,66</td>
</tr>
<tr>
<td>Potentiële Risicofactoren</td>
<td>Prevalentie overgewicht (%)</td>
<td>OR</td>
<td>95% Cl lower</td>
<td>95% Cl upper</td>
<td>Likelihood P</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>6W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borstvoeding</td>
<td>3,3</td>
<td>Ref</td>
<td></td>
<td></td>
<td>0,001</td>
</tr>
<tr>
<td>Gemengde voeding</td>
<td>4,3</td>
<td>1,35</td>
<td>1,1</td>
<td>1,64</td>
<td>0,003</td>
</tr>
<tr>
<td>Kunstvoeding</td>
<td>2,8</td>
<td>0,86</td>
<td>0,73</td>
<td>1,02</td>
<td>0,08</td>
</tr>
<tr>
<td>Ongekend</td>
<td>2,4</td>
<td>0,72</td>
<td>0,34</td>
<td>1,54</td>
<td>0,4</td>
</tr>
<tr>
<td>12W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borstvoeding</td>
<td>3,7</td>
<td>Ref</td>
<td></td>
<td></td>
<td>0,03</td>
</tr>
<tr>
<td>Gemengde voeding</td>
<td>3,3</td>
<td>0,89</td>
<td>0,71</td>
<td>1,11</td>
<td>0,29</td>
</tr>
<tr>
<td>Kunstvoeding</td>
<td>3,0</td>
<td>0,81</td>
<td>0,69</td>
<td>0,95</td>
<td>0,01</td>
</tr>
<tr>
<td>Ongekend</td>
<td>2,1</td>
<td>0,55</td>
<td>0,3</td>
<td>1,01</td>
<td>0,05</td>
</tr>
<tr>
<td>26W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borstvoeding</td>
<td>4,7</td>
<td>Ref</td>
<td></td>
<td></td>
<td><0,001</td>
</tr>
<tr>
<td>Gemengde voeding</td>
<td>3,8</td>
<td>0,8</td>
<td>0,62</td>
<td>1,03</td>
<td>0,08</td>
</tr>
<tr>
<td>Kunstvoeding</td>
<td>2,9</td>
<td>0,62</td>
<td>0,5</td>
<td>0,76</td>
<td><0,001</td>
</tr>
<tr>
<td>Ongekend</td>
<td>2,6</td>
<td>0,55</td>
<td>0,37</td>
<td>0,82</td>
<td>0,003</td>
</tr>
<tr>
<td>Woonplaats (VRIND)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrumsteden</td>
<td>3,6</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grootsteden</td>
<td>5,1</td>
<td>1,42</td>
<td>1,12</td>
<td>1,8</td>
<td>0,004</td>
</tr>
<tr>
<td>Kleinere steden</td>
<td>3,4</td>
<td>0,93</td>
<td>0,72</td>
<td>1,19</td>
<td>0,55</td>
</tr>
<tr>
<td>Overgangsgebied</td>
<td>2,8</td>
<td>0,78</td>
<td>0,6</td>
<td>1</td>
<td>0,05</td>
</tr>
<tr>
<td>Platteland</td>
<td>1,9</td>
<td>0,5</td>
<td>0,37</td>
<td>0,69</td>
<td><0,001</td>
</tr>
<tr>
<td>Stedelijke rand</td>
<td>2,6</td>
<td>0,7</td>
<td>0,52</td>
<td>0,95</td>
<td>0,02</td>
</tr>
<tr>
<td>Ongekend + Wallonië</td>
<td>1,8</td>
<td>0,48</td>
<td>0,15</td>
<td>1,51</td>
<td>0,21</td>
</tr>
<tr>
<td>Woonplaats (Provincie)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antwerpen</td>
<td>3,8</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brussels Hfst. Gew.</td>
<td>6,0</td>
<td>1,63</td>
<td>1,12</td>
<td>2,37</td>
<td>0,1</td>
</tr>
<tr>
<td>Limburg</td>
<td>4,3</td>
<td>1,14</td>
<td>0,92</td>
<td>1,42</td>
<td>0,22</td>
</tr>
<tr>
<td>Oost-Vlaanderen</td>
<td>2,5</td>
<td>0,66</td>
<td>0,53</td>
<td>0,83</td>
<td><0,001</td>
</tr>
<tr>
<td>Vlaams-Brabant</td>
<td>3,1</td>
<td>0,8</td>
<td>0,64</td>
<td>1,01</td>
<td>0,07</td>
</tr>
<tr>
<td>West-Vlaanderen</td>
<td>2,2</td>
<td>0,57</td>
<td>0,44</td>
<td>0,73</td>
<td><0,001</td>
</tr>
<tr>
<td>Wallonië + overige</td>
<td>1,8</td>
<td>0,46</td>
<td>0,14</td>
<td>1,43</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Tabel 8: Univariabele logistische regressie

Met uitzondering van het geslacht, zijn alle onderzochte parameters significant geassocieerd met het voorkomen van een verhoogde BMI z-score op 6 maanden.
C. Multivariabele logistische regressie voor BMI z-score > 2 SD op 6 maanden

Volgende factoren werden in het model samen gebracht: geslacht, geboortegewicht, nationaliteit van de moeder, opleiding van de moeder, pariteit en voeding op 26w (zie methodes).

In het full multiregressie model is het effect van pariteit niet significant (p=0,91), maar het geslacht wel (Tabel 9).

In het finale model hebben geboortegewicht (in kg), nationaliteit en opleiding van de moeder een hoge OR.

In deze studie is er geen significant verband tussen het soort voeding en het risico op overgewicht op leeftijd 6 maanden, maar wel voor opleidingsniveau.

Woonplaats is wel significant, maar als men de subcategorieën bekijkt geldt dit enkel voor 'grootsteden'.

<table>
<thead>
<tr>
<th>Potentiële Risicofactoren</th>
<th>Full model</th>
<th>Final model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI lower</td>
</tr>
<tr>
<td>Geslacht</td>
<td>1,18</td>
<td>1,01</td>
</tr>
<tr>
<td>Geboortegewicht</td>
<td>2,46</td>
<td>2,08</td>
</tr>
<tr>
<td>Nationaliteit moeder</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Belgïë</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>Maghreb + Turkije</td>
<td>2,06</td>
<td>1,6</td>
</tr>
<tr>
<td>Oost-Europa en Ex-Oostblok</td>
<td>1,48</td>
<td>1,1</td>
</tr>
<tr>
<td>Overige</td>
<td>2,14</td>
<td>1,74</td>
</tr>
<tr>
<td>Opleiding moeder</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Hoger Onderwijs</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>Hoger Secundair</td>
<td>1,8</td>
<td>1,49</td>
</tr>
<tr>
<td>Laag geschoold</td>
<td>1,87</td>
<td>1,47</td>
</tr>
<tr>
<td>Ongekend</td>
<td>2,09</td>
<td>1,5</td>
</tr>
<tr>
<td>Pariteit</td>
<td>0,91</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,03</td>
<td>0,86</td>
</tr>
<tr>
<td>3</td>
<td>1,04</td>
<td>0,82</td>
</tr>
<tr>
<td>4 of meer</td>
<td>1,13</td>
<td>0,85</td>
</tr>
<tr>
<td>Ongekend</td>
<td>1,39</td>
<td>0,42</td>
</tr>
<tr>
<td>Voeding 26W</td>
<td>1,21</td>
<td>0,98</td>
</tr>
<tr>
<td>Potentiële Risicofactoren</td>
<td>Full model</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>OR 95% CI</td>
<td>95% CI</td>
</tr>
<tr>
<td>Woonplaats (VRIND)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stedelijke rand</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>Centrumsteden</td>
<td>1,25 0,91</td>
<td>1,7</td>
</tr>
<tr>
<td>Grootsteden</td>
<td>1,41 1,05</td>
<td>1,89</td>
</tr>
<tr>
<td>Kleinere steden</td>
<td>1,13 0,84</td>
<td>1,53</td>
</tr>
<tr>
<td>Ongekend + Wallonië</td>
<td>0,58 0,18</td>
<td>1,89</td>
</tr>
<tr>
<td>Overgangsgebied</td>
<td>1,14 0,84</td>
<td>1,54</td>
</tr>
<tr>
<td>Platteland</td>
<td>0,81 0,57</td>
<td>1,16</td>
</tr>
</tbody>
</table>

Tabel 9: Multivariabele logistische regressie
D. Predictiemodel voor een BMI z-score > 2 SD op 6 maanden

Opbouwen van het predictiemodel
Als relevante factoren worden gekozen: geboortegewicht, nationaliteit van de moeder en opleiding van de moeder. (Tabel 10) Er wordt van 'geboortegewicht' een dichotome variabele gemaakt op basis van een gekozen afkapwaarde met hoge sensitiviteit en specificiteit via ROC analyse. Voor de afkapwaarde van een geboortegewicht van 3,442kg werd een sensitiviteit van 60,3% en een specificiteit van 55,2% bekomen. Woonplaats, voeding en geslacht worden uit het model gelaten gezien de beperkte significantie of beperkt effect.

<table>
<thead>
<tr>
<th>Potentiële Risicofactoren</th>
<th>OR</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>Likelihood P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geboortegewicht</td>
<td>1,98</td>
<td>1,65</td>
<td>2,37</td>
<td><0,001</td>
</tr>
<tr>
<td>Nationaliteit moeder</td>
<td></td>
<td></td>
<td></td>
<td><0,001</td>
</tr>
<tr>
<td>België</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maghreb + Turkije</td>
<td>2,39</td>
<td>1,81</td>
<td>3,14</td>
<td><0,001</td>
</tr>
<tr>
<td>Oost-Europa en Ex-Oostblok</td>
<td>1,8</td>
<td>1,31</td>
<td>2,48</td>
<td><0,001</td>
</tr>
<tr>
<td>Overige</td>
<td>2,32</td>
<td>1,84</td>
<td>2,93</td>
<td><0,001</td>
</tr>
<tr>
<td>Opleiding moeder</td>
<td></td>
<td></td>
<td></td>
<td><0,001</td>
</tr>
<tr>
<td>Hoger Onderwijs</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoger Secundair</td>
<td>1,82</td>
<td>1,46</td>
<td>2,26</td>
<td><0,001</td>
</tr>
<tr>
<td>Laag geschoold</td>
<td>2,02</td>
<td>1,55</td>
<td>2,64</td>
<td><0,001</td>
</tr>
<tr>
<td>Ongekend</td>
<td>1,88</td>
<td>1,28</td>
<td>2,75</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Tabel 10: Finaal model

‘The area under the curve’ (AUC) is 0,68 voor de voorspelde waarschijnlijkheden gegenereerd door het model. De gekozen afkapwaarde geeft een sensitiviteit van 62% en een specificiteit van 66%. (Figuur 5)

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{roc_curve.png}
\caption{ROC curve voor “predicted probabilities” en "overgewicht op 6maanden“}
\end{figure}
Validatie van het predictiemodel

De ROC curve geeft een AUC van 0,69 bij de analyse van de niet ingesloten 30 % van de gegevens, wat een vergelijkbaar resultaat is. (Figuur 6)

Figuur 6: ROC curve voor validatie van het predictiemodel

E. Predictiemodel voor een BMI z-score op 2 jaar op basis van een BMI z-score op 6 maanden

Een ROC curve wordt gegenereerd met BMI z-score op 6 maanden als test variabele en een BMI z-score >2 op leeftijd 2 jaar als outcome (Figuur 7). De AUC is 0,86. Een BMI z-score=0,795 geeft een sensitiviteit van 0,78 en een specificiteit van 0,78. De BMI z-score=1 geeft een sensitiviteit van 0,71 en een specificiteit van 0,83.

Figuur 7: ROC curve voor “BMI-z-score 6maanden” en “overgewicht op 2 jaar”
9. Discussie

We zijn in deze studie in de eerste plaats op zoek gegaan naar factoren die een versnelde gewichtstoename tussen de geboorte en de leeftijd van 6 maanden kunnen verklaren bij Vlaamse zuigelingen. Als uitkomstparameter werd hiervoor een BMI z-score >2 gekozen en niet voor een relatie of absolute toename in BMI z-score. Veranderingen in BMI z-score zijn net zoals veranderingen in lengte z-score mogelijk fysiologische adaptatie mechanismes na een gestoorde intra uteriene groei. Onze werkhypothese was dat niet Belgische origine, een laag opleidingsniveau van de moeder, hoog geboortegewicht en kunstvoeding vanaf de geboorte in sterke mate geassocieerd zijn met overgewicht in de eerste 6 maanden. Deze hypothese kon bevestigd worden, met uitzondering van de voeding. Hoewel zowel voor etniciteit, opleidingsniveau en geboortegewicht een duidelijke associatie (OR>1,8) kon worden aangetoond, blijft de totaal voorspellende waarde echter eerder zwak. Het predictiemodel op basis van deze factoren is met een AUC=0,68 (een sensitiviteit van 62% en specificiteit van 66%) te zwak om het in klinische praktijk naar voor te brengen. In de literatuur werden gelijkaardige predictie modellen beschreven met evenwel licht hogere AUC waardes tussen 0,72 en 0,77. Het model van Robson et al presteert het best (met een AUC=0,8), maar dit is een model gebaseerd op een kleine cohorte met een specifieke etniciteit. In dit laatste model zijn onder andere de BMI van de moeder voor de zwangerschap, de leeftijd van de moeder en de Δ z-score voor gewicht van 0 tot 6 maanden opgenomen, welke ontbreken in ons model.

Voorzichtigheid is trouwens geboden met de interpretatie van elk predictiemodel. Zoals aangehaald door Morandi et al. mag men een predictiemodel niet als diagnostisch instrument gebruiken, maar eerder als leidraad. Het predictiemodel kan enkel gebruikt worden als een beschrijvend model. Het is dus best mogelijk dat op latere leeftijd kinderen overgewicht ontwikkelen die met dergelijk predictiemodel gemist zouden kunnen zijn. Verdere opvolging en extra aandacht voor andere factoren (vb. early adiposity rebound) in de ontwikkeling in de vroege kinderjaren zijn dus steeds noodzakelijk.

In onze studie kon het type voeding als geen onafhankelijke predictor voor overgewicht op 6 maanden weerhouden worden. In de review van Weng et al zijn er echter gemengde resultaten omtrent borstvoeding naar voren gekomen: de helft van de studies kon het protectieve effect aantonen; de andere helft kon dit niet. Er kon wel een bescheiden effect aangetoond worden voor borstvoeding (exclusief of niet exclusief) ten opzichte van kunstvoeding. Uit de literatuur is het bekend dat de associatie borstvoeding en overgewicht/obesitas beïnvloed wordt door...
opleidingsniveau of SES.\(^{(3)}\) Een hogere opleiding is geassocieerd met het (langduriger) geven van borstvoeding en minder risico op overgewicht. Ook in onze studie geven moeders met een hoger opleidingsniveau frequenter borstvoeding zowel bij de geboorte als op 6 maanden.

In onze studie werd roken tijdens de zwangerschap niet opgenomen, gezien deze niet werd geregistreerd. Het is bekend dat roken tijdens de zwangerschap mogelijk een licht verhoogd risico geeft op overgewicht bij het kind (OR 1,47-1,8).\(^{(26,3)}\) Mogelijk wordt deze factor deels opgevangen door het socio-economisch niveau van de moeder. De meest belangrijke ontbrekende parameters in ons model zijn vermoedelijk het gewicht van de moeder voor de zwangerschap en de gewichtstoename in de zwangerschap, welke in de literatuur beiden belangrijke risicofactoren zijn voor overgewicht bij jonge kinderen.\(^{(26,28)}\) Het zou nuttig zijn in de toekomst deze twee factoren ook te registreren bij Kind en Gezin. Het zijn bovendien twee factoren welke men in de prenatale preventie van overgewicht op jonge leeftijd kan opnemen.

Het risico op overgewicht bij een zeer jong kind wordt vaak onderschat door ouders en hulpverleners.\(^{(28)}\) Hulpverleners zijn vaak ook onzeker over hoe dit risico in te schatten. Een model opgesteld aan de hand van eenvoudig te bekomen gegevens is dus voor de preventieve setting een handig hulpmiddel voor de inschatting van dit risico.

Bij het gebruik van een predictiemodel is er echter steeds een risico op het mis identificeren van kinderen die toch geen overgewicht zouden ontwikkelen. Het is nog steeds een gevoelig onderwerp en het is dus moeilijk om kinderen te bestempelen als ‘risico op overgewicht’.

Wegen de voordelen op tegen de nadelen van onnodige interventies? Als een preventief programma betekent extra inspanningen omtrent gezonde voeding aanleveren en kennis aanbieden over gezonde voeding, dan kan dit geen kwaad. Een goede communicatie met de ouders is hier essentieel, waarin geruststelling belangrijk is. Obesitas heeft echter vaak ook veel met context te maken waar we niet altijd vat op hebben. Soms zijn de lichamelijke risico’s nog het minste van de zorgen in een gezin, en moeten eerst andere problemen aangepakt worden eer men aan de gezondheid kan werken. Vaak richten preventieve interventies zich tot het individu of het gezin, maar zelden wordt de omgeving of de nog bredere context meegenomen. Veranderingen op die domeinen zijn natuurlijk moeilijker in beweging te krijgen.

In de tweede plaats gingen we op zoek naar de voorspellende waarde van de BMI z-score op leeftijd 6 maanden voor overgewicht op 2 jaar. Aan de hand van de ROC analyse konden we aantonen dat de BMI z-scores van 0.8 SD en van 1 SD op leeftijd van 6 maanden betrouwbare predictoren zijn voor een BMI z-score > 2 op 2 jaar. Dit bevestigt ons vermoeden dat er reeds op heel jonge leeftijd een uitspraak kan gedaan worden over het risico op overgewicht enkel...
jaren later. Met de afkapwaarde van een BMI z-score van 1SD op 6 maanden kunnen we ongeveer 70% van de kinderen met een risico op overgewicht op 2 jaar identificeren.

Mogelijk is er in onze studie een onderschatting van de prevalentie van overgewicht gezien de keuze voor het WHO criterium van BMI z-score in deze studie. De WHO neemt als afkapwaarde SD>2 voor obesitas en SD>1 voor kinderen ‘at risk’. Het eerste criterium geeft een relatief lage prevalentie, en het laatste een relatief hoge prevalentie in de bestudeerde Vlaamse populatie.\(^{(1)}\)

Uit onderzoek blijkt dat ouders zelf niet altijd inzien of het gewicht van hun kind ongezond is, en zich niet bewust zijn van de impact op de gezondheid van hun kind.\(^{(47)}\) Het communiceren van ‘het risico op overgewicht’ bij hun kind zou dus schuldevoelens kunnen veroorzaken. Bentley et al onderzochten de feedback van ouders op het mededelen van een verhoogd risico op overgewicht bij hun kind. Ouders waren algemeen positief, hoewel er een mismatch was voor leeftijd van interventie. Ouders leggen die op 1 jaar, waardoor het ideale moment om in te grijpen (zijnde nog jongere leeftijd) gemist wordt.

Beperkingen en sterktes in het onderzoek

Een beperking in het onderzoek zijn ontbrekende registraties voor een variabel aantal kinderen. Een aandachtspunt voor Kind en Gezin is dus betere registratie van de gegevens. De belangrijkste zwakte is het ontbreken van het lichaamsgewicht en/of gewichtstoename in de zwangerschap van de moeder, aangezien dit een belangrijke impact blijkt te hebben in vorige studies omtrent predictiemodellen.

Een sterkte van dit onderzoek is de grootte van de dataset en beperkte exclusiecriteria, waardoor men het resultaat kan extrapoleren naar de Vlaamse kinderpopulatie.

Advies voor verder onderzoek

De registratie van de BMI van de moeder voor en op het einde van de zwangerschap, en van het roken tijdens de zwangerschap kunnen nuttig zijn om een sterker predictie model voor overgewicht te kunnen op te stellen voor routinegebruik. Verder onderzoek kan ook nog gebeuren naar het effect van het soort voeding op het risico op overgewicht. We hebben hier gegevens op enkele tijdstippen, dus enkel het effect van de duur van exclusieve borstvoeding kan nagegaan worden.
De bedoeling van een predictiemodel is om hoog risico gezinnen op te gaan sporen en doelgericht preventief en op maat advies te kunnen geven. Verder onderzoek is echter nodig naar de aanvaardbaarheid bij ouders van doelgerichte preventie in plaats van algemene preventie van overgewicht bij kinderen. Er is nog steeds angst bij hulpverleners om gezinnen te stigmatiseren en zo de vertrouwensrelatie te schenden.

Ouders zijn gevoelig voor informatie over hun kind op jonge leeftijd, dus preventieve acties ondernemen reeds op heel jonge leeftijd is een goede strategie. Een voorbeeld kan zijn om de hoog risico groep intensiever op te volgen bij K&G en extra voedingsadvies aan te bieden. Studies die de effectiviteit van dergelijke acties onderzoeken zijn noodzakelijk.
10. Samenvatting

In deze studie wilden we nagaan welke demografische, biometrische en voedingsfactoren, die beschikbaar zijn in hetregistratiesysteem van Kind en Gezin, geassocieerd zijn met overgewicht op 6 maanden bij ad term geboren eenlingen met een opvolging in de consultatiebureaus van Kind en Gezin en in welke mate met deze determinanten een betrouwbare predictiemodel kan worden opgesteld. Voorts wilden we nagaan in hoeverre de gewichtsstatus op 6 maanden de gewichtsstatus op 2 jaar voorspelt of met andere woorden hoe sterk de tracking van overgewicht is in de eerste 2 levensjaren.

De doelgroep waren alle pasgeboren eenlingen, uit de eerste helft van 2015, met consulten bij Kind en Gezin, en voor wie minimaal de lengte en het gewicht bij de geboorte, en op 6 weken en/of 2 maanden en op 6 maanden gekend is. Volgende gegevens uit de database van Kind en Gezin, die geregistreerd worden tijdens het eerste consult of volgende consulten, werden opgeladen in een bestand : geslacht, type voeding (flesvoeding/borstvoeding/gemengd), geboortegewicht, geboortelengte, beschikbare gewichten en lengtes in de eerste 24 maanden (tem 28m om de laatkomers te includeren), etnische origine van de moeder, opleidingsniveau van de moeder, pariteit, postcode (VRIND-indeling) en provincie.

Door middel van univariabele en nadien multivariabele logistische regressie werden significante en/of relevante factoren geïdentificeerd. Deze werden gebruikt om een predictiemodel op te bouwen, waarvan de waarde werd geschat door middel van een ROC curve. Ook werd het verband tussen de gewichtsstatus op 6 maanden en de gewichtsstatus op 2 jaar onderzocht door middel van een ROC analyse.

Uit de resultaten bleek dat er vijf factoren een verhoogd risico op overgewicht, gedefinieerd door een BMI z-score van >2SD, inhouden: Geslacht, woonplaats (VRIND), geboortegewicht, nationaliteit van de moeder en opleidingsniveau van de moeder. De laatste drie werden als klinisch relevant beschouwd en werden in een predictiemodel gebracht. Dit model bleek echter niet sterk genoeg (AUC < 0.8) om in de praktijk te kunnen gebruiken. Uit de resultaten bleek ook dat de BMI z-score >1SD op leeftijd 6 maanden een goede indicator is van een verhoogde BMI (> 2 SD) op 2 jaar.

Hoewel voor etniciteit, opleidingsniveau en geboortegewicht een duidelijke associatie kan worden aangetoond met overgewicht op 6 maanden, bleef de voorspellende waarde in een predictie model niet sterk genoeg om in klinische praktijk te brengen. In de praktijk kan de hoge gewichtsstatus op leeftijd 6 maanden wel als indicator gebruikt worden voor een sterk verhoogde BMI waarde op 2 jaar.
11. Referentielijst

33. WHO. *Exclusive breastfeeding.*
http://www.who.int/nutrition/topics/exclusive_breastfeeding/en/ accessed 21 maart 2018

42. Redsell SA, et al. Systematic review of randomised controlled trials of interventions that aim to reduce the risk, either directly or indirectly, of overweight and obesity in infancy and early childhood. *Maternal and Child Nutrition.* 2016;12:24-38

46. Tape T.G. Interpreting diagnostic tests. Philadelphia: Lippincott Williams&Wilkins;2000

47. Bentley F, Swift JA, Cook R, Redsell SA. “I would rather be told than not know” – A qualitative study exploring parental views on identifying the future risk of childhood overweight and obesity during infancy. *BMC Public Health.* 2017;17:684
12. Bijlagen

Bijlage 1: Goedkeuring Ethisch comité
Bijlage 2: Goedkeuring Toezichtscommissie
ADVIES VAN DE COMMISSIE MEDISCHE ETHIEK

Betrekkt:
Predictie van versnelde gewichtstoename in de eerste 6 levensmaanden bij ad term geboren kinderen
B.U.N. 143201734212

Na kennis genomen te hebben van de documenten betreffende het bovenvermelde project, besluit de Commissie Medische Ethiek tijdens haar vergadering van 13 december 2017
dat de voorziene retrospectieve studie mag ondernomen worden.

Deze goedkeuring blijft geldig voor de duur van het project. De Commissie wenst een jaarlijks overzicht van de stand van zaken van het project te ontvangen. De studieresultaten dienen overgemaakt te worden aan de Commissie bij het beëindigen van de studie. Zij herinneren de verantwoordelijke van het experiment eraan dat dit experiment onder zijn persoonlijke verantwoordelijkheid zal worden uitgevoerd. Het gunstig advies van de Commissie betekent geenszins dat de Commissie de verantwoordelijkheid van het experiment op zich neemt. De Commissie Medische Ethiek werkt en is georganiseerd volgens de richtlijnen van ICH-GCP.

Met de meeste hoogachting,

A. Van Steirteghem, voorzitter
<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Em. A. Van Steirteghem</td>
<td>CHAIRMAN UZ BRUSSEL</td>
<td>M</td>
</tr>
<tr>
<td>Prof. Dr. J. van der Werff ten Bosch, MD, PhD</td>
<td>VICE-CHAIRMAN Pediatrics UZ BRUSSEL</td>
<td>F</td>
</tr>
<tr>
<td>Dr. Y. Adriaenssens, MD</td>
<td>General Practitioner Mechelen</td>
<td>M</td>
</tr>
<tr>
<td>Dr. K. Beeckman, PhD</td>
<td>Nursing and Midwifery research group UZ BRUSSEL</td>
<td>F</td>
</tr>
<tr>
<td>Dr. Apr. V. Caveliers, PhD</td>
<td>Pharmacist UZ BRUSSEL</td>
<td>F</td>
</tr>
<tr>
<td>Prof. Dr. F. Cools, MD, PhD</td>
<td>Neonatology UZ BRUSSEL</td>
<td>M</td>
</tr>
<tr>
<td>Prof. Dr. J. De Grève, MD, PhD</td>
<td>Medical Oncology UZ BRUSSEL</td>
<td>M</td>
</tr>
<tr>
<td>Mrs. M. De Win</td>
<td>External Member</td>
<td>F</td>
</tr>
<tr>
<td>Prof. Dr. I. Gies, MD, PhD</td>
<td>Pediatrics UZ BRUSSEL</td>
<td>F</td>
</tr>
<tr>
<td>Mr. S. Gondry, LLM</td>
<td>Attorney at Law Antwerp</td>
<td>M</td>
</tr>
<tr>
<td>Prof. Dr. P. Lacor, MD</td>
<td>Internal Medicine UZ BRUSSEL</td>
<td>M</td>
</tr>
<tr>
<td>Prof. Dr. J. Poelaert, MD, PhD</td>
<td>Anesthesiology UZ BRUSSEL</td>
<td>M</td>
</tr>
<tr>
<td>Prof. Dr. C. Schotte, PhD</td>
<td>Clinical Psychology UZ BRUSSEL</td>
<td>M</td>
</tr>
<tr>
<td>Dr. D. Van den Berge, MD</td>
<td>Radiotherapy UZ BRUSSEL</td>
<td>M</td>
</tr>
<tr>
<td>Mrs. A. Van Scharen, LLM</td>
<td>Legal Expert Research & Development - VUB</td>
<td>F</td>
</tr>
<tr>
<td>Prof. Dr. T. Vanhaecke, PhD</td>
<td>Toxicology - Faculty of Medicine and Pharmacy VUB</td>
<td>F</td>
</tr>
<tr>
<td>Mrs. T. Vanderreken</td>
<td>Nurse UZ BRUSSEL</td>
<td>F</td>
</tr>
<tr>
<td>Prof. Dr. I. Willekens, MD, PhD</td>
<td>Radiology UZ BRUSSEL</td>
<td>F</td>
</tr>
</tbody>
</table>

If member of the Ethics Committee, the investigator does not participate to the vote.
Vlaamse Toezichtcommissie voor het elektronische bestuurlijke gegevensverkeer

Beraadslaging VTC nr. 46/2017
van 20 december 2017

Betreft: aanvraag tot machtiging voor de mededeling van gecodeerde persoonsgegevens van ad term geboren kinderen in de eerste helft van 2015 door Kind en Gezin (K&G) aan de Vrije Universiteit Brussel (VUB) in het kader van het wetenschappelijk onderzoek rond versterkte gewichtstoename bij ad term geboren kinderen in de eerste 6 levensmaanden tot op tweejarige leeftijd.

I. ELEMENTEN VAN DE AANVRAAG

A. WETTELIJKE, DECRETALE EN REGLEMENTAIRE GRONDSLAGEN

1. De Vlaamse Toezichtcommissie voor het elektronische bestuurlijke gegevensverkeer (hierna: "VTC");

2. Gelet op het decreet van 18 juli 2008 betreffende het elektronische bestuurlijke gegevensverkeer (hierna: "het e-govdecreet"), inzonderheid de artikelen 8 en 11;

3. Gelet op de wet van 8 december 1992 tot bescherming van de persoonlijke levenssfeer ten opzichte van de verwerking van persoonsgegevens (hierna "WVP");

4. Gelet op de wet van 8 augustus 1983 tot regeling van een Rijksregister van de natuurlijke personen (hierna "WRR");
5. Gelet op de wet van 5 mei 2014 houdende verankering van het principe van de unieke gegevensinzameling in de werking van de diensten en instanties die behoren tot of taken uitvoeren voor de overheid en tot vereenvoudiging en gelijkschakeling van elektronische en papieren formulieren (hierna “wet van 5 mei 2014”), inzonderheid artikel 5;

B. VERLOOP VAN HET ONDERZOEK

7. Gelet op de aanvraag, ontvangen op 14 november 2017;

8. Gelet op de evaluatie van de beveiliging van Kind & Gezin, ontvangen op 7 maart 2017;

9. Gelet op de evaluatie van de beveiliging van de Vrije Universiteit Brussel, ontvangen op 14 november 2017;

10. Beslist op 20 december 2017, na beraadslaging, als volgt:

II. ONDERWERP EN CONTEXT VAN DE AANVRAAG

12. In deze studie wil een onderzoeker nagaan welke factoren, die beschikbaar zijn in het registratiesysteem van K&G, geassocieerd zijn met een versterkte gewichtstoename in de eerste 6 maanden bij ad term geboren eenlingen met een opvolging in de consultatiebureaus van K&G en deze vergelijken met de gegevens op de leeftijd van 2 jaar.

13. De werkhypothese is dat niet Belgische origine, een laag opleidingsniveau, macrosomie, flesvoeding sinds de geboorte en een meer dan gemiddelde gewichtstoename in de eerste 2 maanden in sterke mate geassocieerd zijn met een grotere gewichtstoename in de eerste 6 maanden.
14. Het doel is een predictiemodel op te stellen voor een gemakkelijke en snelle risico inschatting van een versnelde gewichtstoename op basis van groeigegevens in de eerste 6 levensmaanden, zodat indien nodig een gericht preventie programma vroegtijdig zou kunnen opgestart worden bij de hoog risico groep.1 2

15. De aanvraag werd ingediend in het kader van een eindwerk van een studente in de master na master Jeugdgezondheidszorg.

III. ONDERZOEK VAN DE AANVRAAG

A. ONTVANKELIJKHEID

16. De kinderen uit de doelgroep worden geïdentificeerd aan de hand van o.m. geslacht, gewicht, lengte, postcode, In casu betreft het een latere verwerking van gegevens die informatie bevatten omtrent een geïdentificeerde natuurlijke persoon. Deze gegevens kunnen dus als persoonsgegevens in de zin van artikel 1, §1, WVP, gekwalificeerd worden.

17. Aangezien deze persoonsgegevens op een geautomatiseerde wijze worden verwerkt, is de WVP van toepassing3.

18. Overeenkomstig artikel 8, eerste lid, van het e-govdecreet vereist elke elektronische mededeling van persoonsgegevens door een instantie4 een machtiging van de VTC, tenzij de elektronische mededeling van gegevens al onderworpen is aan een machtiging van een ander sectoraal comité, opgericht binnen de Commissie voor de bescherming van de persoonlijke levenssfeer.

3 Art. 3, §1 WVP.
4 Het begrip 'instantie' wordt gedefinieerd in artikel 2, 10a, van het decreet als: "een instantie, vermeld in artikel 4, §1, van het decreet van 26 maart 2004 betreffende de openbaarheid van bestuur".
Art. 4. § 1. Dit decreet is van toepassing op de volgende instanties:
1° het Vlaams Parlement en de eraan verbonden instellingen;
2° de diensten, instellingen en rechtspersonen die afhangen van de Vlaamse Gemeenschap of het Vlaamse Gewest;
3° de gemeenten en de districten;
4° de provincies;
5° de andere gemeentelijke en provinciale instellingen, met inbegrip van de verenigingen zonder winstoogmerk waarin één of meer gemeenten of de provincies minstens de helft van de stemmen in één van de beheersorganen heeft of de helft van de financiering voor haar rekening neemt;
6° de verenigingen van provincies en gemeenten, bedoeld in de wet van 22 december 1986 betreffende de intercommunales, en de samenwerkingsvormen zoals geregeld in het decreet van 6 juli 2001 houdende de intergemeentelijke samenwerking;
7° de openbare centra voor maatschappelijk werken, hierna O.C.M.W.’s te noemen, en de verenigingen, bedoeld in hoofdstuk 12 van de organieke wet van 8 juli 1976 betreffende O.C.M.W.’s;
8° de polders, bedoeld in de wet van 3 juni 1957 betreffende de polders, en de wateringen, bedoeld in de wet van 5 juli 1956 betreffende de wateringen;
9° de kerkfabrieken en de instellingen die belast zijn met het beheer van de temporellen van de erkende erediensten;
10° alle andere instanties binnen het Vlaamse Gewest en de Vlaamse Gemeenschap.

20. De VTC is derhalve bevoegd om voorliggende machtigingsaanvraag te behandelen.

B. TEN GRONDE

B.1. FINALITEITSBEGINSEL

21. Artikel 4, §1, 1°, WVP, stelt dat iedere verwerking van persoonsgegevens eerlijk en rechtmatig moet zijn. Dit houdt in dat iedere gegevensverwerking dient te gebeuren op een transparante wijze en mits naleving van het recht.

22. Overeenkomstig artikel 4, §1, 2°, WVP, dienen persoonsgegevens voor welbepaalde, uitdrukkelijk omschreven en gerechtvaardigde doeleinden te worden verkregen en mogen zij niet verder worden verwerkt op een wijze die onverenigbaar is met die doeleinden. Hierbij wordt rekening gehouden met alle relevante factoren, met name de redelijke verwachtingen van de betrokkene en met de toepasselijke wettelijke en reglementaire bepalingen. De VTC onderzoekt hierna de verschillende aspecten van dit finaliteitsbeginsel.

Oorspronkelijke doeleinde van de gegevensverwerking:

23. Kind en Gezin is een agentschap van de Vlaamse overheid. Het heeft als opdracht om actief bij te dragen tot het welzijn van jonge kinderen en hun gezinnen door dienstverlening op de beleidsvelden preventieve gezondheidszorg, kinderopvang en adoptie. Tal van gegevens over (voeding, gezondheid, herkomst, …van) kinderen en gezinnen die gezien worden in het kader van de preventieve gezinsoverheidszorg, worden door Kind en Gezin medewerkers geregistreerd in een elektronisch registratiesysteem (tot 2010 IKAROS, vanaf 2011 MIRAGE), waarvan de gegevens bijgehouden en omsloten worden via een datawarehouse. Het registratiesysteem en de databank dienen vooral de dienstverlening. Het systeem zorgt er bijvoorbeeld voor dat iedere werknemer (bijvoorbeeld een verpleegster) in real time aan de slag kan gaan met de meest recente informatie. De databank fungeert ook ter ondersteuning van de beleidsopdrachten van Kind en Gezin en dienen ook als basis voor wetenschappelijk onderzoek.

Doeleinde van de verdere verwerking:

__

5 Decreet van 30 april 2004 tot oprichting van de Kind en Gezin.
24. De gevraagde gegevens zijn noodzakelijk om een wetenschappelijk onderzoek te voeren met als doel een predictiemodel op te stellen voor een gemakkelijke en snelle risico inschatting van een versnelde gewichtstoename op basis van groeigegevens in de eerste 6 levensmaanden, zodat indien nodig een gericht preventie programma vroegtijdig zou kunnen opgestart worden bij de hoge risico groep.

26. De vetmassa neemt het snelst toe in de eerste 6 levensmaanden. Een versnelde gewichtstoename in eerste 6 à 12 levensmaanden is een risicofactor voor de ontwikkeling van obesitas op kinderleeftijd, insulineresistentie, dyslipemie en arteriële hypertensie in de adolescentie en jongvolwassen leeftijd.

27. De gewichtsevolutie bij zuigelingen en associatie met obesitas op latere leeftijd is verschillend tussen landen. Verscheidene interventies, zoals een lager eiwitgehalte van zuigelingenvoeding, het aanhouden van exclusieve borstvoeding in de eerste 4 maanden, en latere introductie van vaste voeding kunnen het risico op obesitas op jonge leeftijd verminderen.6

28. De VTC is van oordeel dat de doeleinden welbepaald en uitdrukkelijk omschreven zijn in de zin van artikel 4, §1, 2°, WVP.

29. Aangaande de vereiste van verenigbaarheid met het oorspronkelijk doeleinde, wijst de VTC erop dat de geplande verwerkingen, bestaan uit latere verwerkingen van gegevens die oorspronkelijk voor andere doeleinden werden verwerkt. De rechtmattigheid van deze latere verwerkingen is aldus afhankelijk van hun verenigbaarheid met de oorspronkelijke verwerking.

30. Overeenkomstig artikel 4, §1, 2°, WVP, mogen persoonsgegevens niet verder worden verwerkt op een wijze die, rekening houdende met alle relevante factoren, met name de redelijke verwachtingen van de betrokkene en met de toepasselijke wettelijke en reglementaire bepalingen, onverenigbaar is met die doeleinden.

31. Deze bepaling maakt echter wel een uitzondering voor wat statistisch en wetenschappelijk onderzoek betreft: "Onder de voorwaarden vastgesteld door de Koning na advies van de Commissie voor de bescherming van de persoonlijke levenssfeer, wordt verdere verwerking van de gegevens voor historische, statistische of wetenschappelijke doeleinden niet als onverenigbaar beschouwd;".

6 De aanvraag vermeldt in het kader van de onderzoeksvraag en de methodologie wetenschappelijke literatuur waarop het onderzoek zich zal baseren, terug te vinden in bijlage 5.
32. Niettemin moet wel rekening gehouden worden met de belangen van de betrokkenen. Vandaar dat de vereisten van transparantie en beveiliging een doorslaggevende rol spelen (zie onder B.3 en B.5)

B.2. PROPORTIONALITEITSBEGINSSEL

B.2.1. Aard van de gegevens

33. Overeenkomstig artikel 4, §1, 3°, WVP, moeten persoonsgegevens toereikend, ter zake dienend en niet overmatig te zijn, uitgaande van de doeleinden waarvoor zij worden verkregen of waarvoor zij verder worden verwerkt.

34. Er worden gecodeerde persoonsgegevens bij K&G opgevraagd van deelnemers aan humane biomonitoringstudies. De ouders van de betrokken kinderen hebben allemaal in een geïnformeerd toestemmingsformulier toestemming gegeven om deze gegevens op te vragen. Het gaat om ongeveer 1700 kinderen die hebben deelgenomen aan de studies uitgevoerd door het Steunpunt Milieu & Gezondheid.

35. Het betreft gegevens over ad term geboren kinderen in de eerste helft van 2015. De gegevens van deze kinderen worden gevraagd tot zij de leeftijd van 2 jaar hebben.

36. De gegevens die gevraagd worden van Kind en Gezin zijn de volgende:

Geslacht	Er zal worden nagegaan of het geslacht invloed heeft op de gewichtstoename.
Type voeding	Om na te gaan of een groter risico afhankelijk is van het type voeding
Flesvoeding/borstvoeding/gemengd tot 6 maanden leeftijd	
Geboortegewicht in kilogram	Noodzakelijk voor de berekeningen (BMI, ponderale index)
Geboortelengte in cm	Noodzakelijk voor de berekeningen
Beschikbare gewichten en lengtes in de eerste 24 maanden	Kan de gewichtsstatus op leeftijd 6 maanden een voorspelling geven over de gewichtsstatus op 2 jaar? Essentieel voor de onderzoeks vraag, waarbij evolutie van gewicht en lengte cruciale indicatoren zijn.
Etnische Origine	Demografische factor gekend in de database. Relevant gegeven in het kader van de onderzoeks vraag. (Is er een hoger risico op basis van origine?)
Opleidingsniveau van de moeder: opdeling laag/gemiddeld/hoog geschoold	Relevant gegeven in het kader van de onderzoeks vraag. (Is er een hoger risico bij jongere of net bij oudere moeders?)
Pariteit	Relevant gegeven in het kader van de onderzoeks vraag. (Is er een hoger risico bij een eerstgeborene of bij een tweede/derde kind?)
Postcode	Relevant gegeven in het kader van de onderzoeks vraag. (Is er een hoger risico afhankelijk
37. Het gegeven etnische origine moet in het kader van deze gegevensstroom beschouwd worden als een gevoelige gegeven% volgens artikel 6, §1, WVP%.

38. De VTC is van oordeel dat de gevraagde gegevens conform zijn aan artikel 4, §1, 3°, WVP en relevant, evenredig en niet buitensporig voor de doeleinden van het onderzoek.

B.2.2. Bewaringstermijn van de gegevens

39. Artikel 4, §1, 5°, WVP voorziet dat persoonsgegevens niet langer mogen worden bewaard dan noodzakelijk is voor de verwezenlijking van de doeleinden waarvoor zij worden verkregen of verder worden verwerkt.

40. De aanvraag vermeld een termijn van 5 jaar, tot de masterthesis afgewerkt is.

41. De VTC gaat akkoord met deze bewaartermijn en benadrukt dat deze periode de gegevens moeten vernietigd worden (eind 2022).

B.2.3. Frequentie van de toegang

42. De gegevens worden eenmalig opgevraagd.

43. De VTC gaat akkoord met deze frequentie.

B.2.4. Duur van de machtiging

44. De machtiging wordt gevraagd voor een termijn van 5 jaar. Dit is de termijn om de masterthesis af te werken.

45. De VTC gaat akkoord met deze duur tijd.

B.2.5. Bestemmelingen en/of derden waaraan gegevens worden meegedeeld

7 Dergelijke gegevens mogen verwerkt worden omdat de verwerking voldoet aan de voorwaarden bepaald in artikel 6, §2, g), WVP en hoofdstuk III van het KB van 13 februari 2001.

8 "Art. 6, § 1. De verwerking van persoonsgegevens waaruit de raciale of etnische afkomst, de politieke opvattingen, de godsdienstige of levensbeschouwelijke overtuiging of het lidmaatschap van een vakvereniging blijken, alsook de verwerking van persoonsgegevens die het seksuele leven betreffen, is verboden.

§ 2. Het verbod om de in § 1 van dit artikel bedoelde persoonsgegevens te verwerken, is niet van toepassing in een van de volgende gevallen:

[...]

g) wanneer de verwerking noodzakelijk is voor het wetenschappelijk onderzoek en verricht wordt onder de voorwaarden vastgesteld door de Koning bij een in Ministerraad overlegd besluit, na advies van de Commissie voor de bescherming van de persoonlijke levenssfeer;"
46. Enkel de onderzoeker in het kader van de masterthesis heeft toegang tot de gegevens. Daarnaast ook 3 personen die de onderzoeker ondersteunen bij de thesis.

B.3. TRANSPARANTIEBEGINSEL

47. Artikel 9 WVP voorziet in een verplichting tot informatie van de betrokken personen van wie persoonsgegevens worden gebruikt.

48. De gevraagde gegevens werden door Kind & Gezin verzameld in het kader van humane biomonitoringstudies. De ouders van de betrokken kinderen hebben allemaal via een geïnformeerd formulier toestemming gegeven om deze gegevens op te vragen.

49. De gevraagde persoonsgegevens zullen volledig gecodeerd als basis gebruikt worden voor statistische analyses.

B.4. EXTERNE VERWERKERS EN DIENSTENINTEGRATOREN

50. Er wordt geen beroep gedaan op een externe verwerker.

51. De gevraagde gegevensstroom verloopt niet via een dienstenintegrator. De tussenkomst van een dienstenintegrator biedt hier onvoldoende meerwaarde.

B.5. BEVEILIGING

52. De VTC wijst de verantwoordelijke voor de verwerking op de verplichtingen van artikel 16 WVP en op de richtsnoeren informatieveriligheid8.

53. Het veiligheidsbeginsel voor de verwerkingen van persoonsgegevens, bepaald in artikel 16 WVP, verplicht de verantwoordelijke voor de verwerking tot het nemen van de passende technische en organisatorische maatregelen om de gegevens die hij verwerkt te beschermen en zich te wapenen tegen afwijkingen van het doelende. Het passend karakter van deze veiligheidsmaatregelen hangt enerzijds af van de stand van de techniek en de hiermee gepaard gaande kosten, en anderzijds van de aard van de te beschermen gegevens en de potentiële risico’s.

54. K\&G zal de gegevens elektronisch doorgeven via encryptie (bv win-zip) op cd-rom. Na ontvangst van de cd-rom zal de sleutel via een ander kanaal doorgegeven worden om de gegevens te ontsleutelen. De cd-rom moet vernietigd worden op het moment dat de gegevens ingeladen zijn.

55. Aangezien het een verdere verwerking van persoonsgegevens voor wetenschappelijk onderzoek betreft, zijn de bepalingen van afdeling II van het KB van 13 februari 2001 van toepassing. Conform artikel 9 van dat KB worden in casu de persoonsgegevens voorafgaand aan de mededeling gecodeerd door de verantwoordelijke voor de verwerking, Kind & Gezin.

56. De VTC benadrukt dat de aanvrager alle mogelijke middelen moet inzetten om te vermijden dat de identiteit van de personen op wie de meegedeelde gegevens betrekking hebben, zou worden achterhaald. Het indelen in klassen of het weglaten van de variabelen die het grootste risico op heridentificatie inhouden, wordt beschouwd als een adequaat middel. In elk geval is het de aanvrager verboden om handelingen te stellen die ertoe strekken de meegedeelde gecodeerde gegevens om te zetten in niet-gecodeerde gegevens van persoonlijke aard.

B.5.1. Op het niveau van de aanvrager

57. De VUB beschikt over een veiligheidsconsulent die gekend is bij de VTC en Gezondheid en beschikt over een schriftelijk veiligheidsbeleid.

B.5.2. Op het niveau van de instantie die de gegevens zal doorgeven

58. Kind en Gezin heeft een veiligheidsconsulent en beschikt over een schriftelijk veiligheidsbeleid.\(^{10}\)

10 Zie machtiging VTC nr. 24/2013 van 31 juli 2013, nummer 55.
59. De VTC **machtig**t Kind & Gezin om de gevraagde persoonsgegevens mee te delen aan de VUB voor de doeleinden en onder de voorwaarden vermeld in deze machtiging.

60. De machtiging wordt verleend voor een periode van 5 jaar, tot eind 2022.

Willem Debeuckelaere
Voorzitter

Getekend door: Willem Debeuckelaere [Sigt]
Getekend op: 2017-12-22 13:23:46 +01:00
Reden: Ik keur dit document goed

Willem Debeuckelaere