Workshop 5: HPV vaccination programs in Europe, lessons learnt and the way forward.

Alex Vorsters & Pierre Van Damme
HPV prevention and control board
Centre for the evaluation of vaccination
Vaccine and Infectious disease Institute
University of Antwerp
Workshop 5: HPV vaccination programs in Europe, lessons learnt and the way forward.

Aims of the workshop

• To examine challenges related to introducing and maintaining a HPV immunization program, including the degree of preparedness of all concerned parties to introduce a vaccine into pre-adolescent and adolescent populations

• To review country experiences of HPV vaccine introduction and perspectives on overcoming challenges

• To consider ways of engaging and communicating with different audiences, including the management of misperceptions and misinformation and overcoming the consequent vaccine hesitancy

• To discuss how challenges could be avoided or overcome.

• To discuss a safety plan, how can countries prepare themselves.
Workshop 5: HPV vaccination programs in Europe, lessons learnt and the way forward.

Program

• 10:15 Presentation of objectives and Introduction of the participants

• 10:20 Presentation HPV vaccination coverage drop: are there common denominators? (Alex Vorsters and Pierre Van Damme)

• 10:45 Country presentations

• United Kingdom: Rene Skule, Miriam Edelsten; Switzerland: Susanne Stronski; Slovenia: Janja Schweiger Nemanić; Macedonia: Mimi Karovska Karel Hoppenbrouwers; Finland: Anelli Ignatius; Croatia: Neda Ferenčić Vrban; Belgium/Flanders: Corrine Vandermeulen;

• 11:45 Discussion
HPV vaccination coverage drop: are there common denominators?

Alex Vorsters & Pierre Van Damme
HPV prevention and control board
Centre for the Evaluation of Vaccination
Vaccine and Infectious Disease Institute
University of Antwerp
Introduction

• A number of countries faced steep or substantial drop in HPV vaccine coverage.
 • E.g. Japan, Colombia, and Denmark

• Previous meetings:
 • Barriers in HPV vaccination & cervical screening programmes’, 27-28 June 2016, Antwerp, Belgium
 • Prevention and control of HPV and HPV-related cancers in Denmark: lessons learned and the way forward’, 17-18 November 2016, Copenhagen, Denmark
 • Posters presented at the Symposium: “Building Trust, Managing Risk: Vaccine Confidence and Human Papillomavirus Vaccination, 7-8 June 2017, London, UK
 • Japan, Colombia and Denmark
Coverage rate HPV vaccination in Colombia

Psychogenic mass event

May – Aug 2014

Personal communication from the ICO HPV Information Centre. Data from Colombia Ministry of Health and Social Protection.
Uptake rates HPV vaccine in Sapporo, Japan, as of March, 2014

The first birth cohort who were eligible for free vaccination after suspension of proactive recommendation.

Coverage rate HPV vaccination / birth cohort I in different Nordic Countries

Percentage

Birth year

1998 1999 2000 2001 2002 2003

Denmark Sweden Norway Finland Iceland

Courtesy of Palle Valentiner-Brandt
Fig. 1. Potential stages in the evolution of immunization program, showing the dynamics of the interaction between vaccine coverage, disease incidence and vaccine adverse events, as the program matures from pre-vaccine to disease eradication.

Enhancing vaccine safety capacity globally: a lifecycle perspective. Vaccine 33, 2015
Mapping of stakeholders/factors potentially having impact on HPV vaccination coverage in the different countries

Events being associated with vaccination
- observed in vaccinated girls
- having a long and severe impact on coverage

Organized “anti-vaccine” activities/groups
- getting lot of attention and seem to have large impact on social media
- referring to limited number of “bad science” articles

Public confidence Adolescents/Parents
- in general very positive towards importance, safety and effectiveness of vaccines. Very good coverage of other vaccines (JP, DK, CO)
- follow recommendation of vaccinators (JP, DK)

Vaccine providers/HCW
- most important information/recommendation source for parents/girls
- appropriate training (especially GPs and other HCW outside a school based vaccination system) is challenging
- should very well understand difference between association time and causality

Media and social media
- Events are covered extensively; not always taking into account scientific arguments

Government Ministry of Health NITAG
- response is slow, absence of crisis plan or strategy
- stops recommending vaccination (JP); starts sponsored investigation (DK)
- those that defend vaccination are blamed to be biased by Industry
- some generate ‘bad science’ attempting to demonstrate causality between vaccines and AE.

Academic researchers
- have data, expertise and early alert systems
- often negatively perceived
- reports from assertive marketing reinforcing negative perception.

Industry/Vaccine manufacturers
- supported/stimulated by ‘anti-vaccine’ groups, specialized lawyers
- opinions from experts called in by parents/lawyers are not necessarily supported by the scientific community.
- reimbursement does confirm a direct causal link

Vaccine injury reimbursements/court cases
The CDC did an epidemiological study and discovered that sperm do not cause pregnancy. They counted the number of sperm ejaculated and compared this to the number of pregnancies and found that the statistical correlation was too small to suggest a causal relationship.
Safety of vaccines: interpretation = difficult

- What we ‘see’ determines our perception

<table>
<thead>
<tr>
<th>Disease</th>
<th>Vaccinated</th>
<th>Not vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Safety of vaccines: interpretation = difficult

• What we ‘see’ determines our perception
 • but we need the total picture:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinated</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Not vaccinated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Safety of vaccines: interpretation = difficult

- What we ‘see’ determines our perception
 - **but we need the total picture:**
 - population 200,000
 - Risk of a disease (e.g. MS): 1/10,000
 - Immunization rate: 80%

<table>
<thead>
<tr>
<th>Vaccinated</th>
<th>Disease</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>16</td>
<td>160,000</td>
</tr>
<tr>
<td>No</td>
<td>159,984</td>
<td></td>
</tr>
<tr>
<td>Not vaccinated</td>
<td>4</td>
<td>40,000</td>
</tr>
<tr>
<td></td>
<td>39,996</td>
<td></td>
</tr>
</tbody>
</table>
Lessons learnt at our Denmark meeting

• Include a **communication budget** at the start of (national) vaccination programs;

• Consider the **use of social media** as part of the communication strategy;

• Provide **training to HCP** on how to discuss the vaccine with vaccinees and their parents;

• Develop a **crisis action plan** before the introduction of vaccination, as there will be no time once a crisis occurs;

• Define the right **age for vaccination**, as this may diminish some challenges;

• Communicate about the vaccine as **one voice among experts**;

• Take potential side effects seriously, but without focusing on the alleged link, keeping the **focus on the positive benefit risk balance** of the vaccine.

• Reach out to silent supporters of the vaccine
Conclusions of barriers meeting in Antwerp

• good preparation, well in advance of the start of the program

• good communication, with all parties involved, with material that is suitable for each target group, and extra attention for hard-to-reach populations, as they may be at higher risk

• a school-based system

• an action plan to quickly and effectively handle anti-vaccine media exposure

• appropriate data management and linkage to facilitate early detection of signals, but also show impact of vaccination
Thank you for your attention

www.hpvboard.org