Hearing Screening based on Sound Perception in Noise

Sam Denys
Michael Hofmann
Jan Wouters

ExpORL

Marya Rashid
Laura Sels
Wouter Dreschler

Jan De Laat

AMC Amsterdam
UMC Leiden
School-Age Hearing Screening Rationale
School-Age Hearing Screening in Flanders

3-4 yrs
risk analysis (\rightarrow AUDIO\textsubscript{1+4kHz})

5-6 yrs
 AUDIO\textsubscript{1+4kHz}

10-11 yrs
SPIN-test

14-15 yrs
SPIN-test

10-11 yrs
SPIN-test
School-Age Hearing Screening in Flanders

3-4 yrs
risk analysis (→ AUDIO\(_{1+4kHz}\))

5-6 yrs
AUDIO\(_{1+4kHz}\)

10-11 yrs
SPIN-test

14-15 yrs
SPIN-test
Pure Tone Audiometry
Pure Tone Audiometry

Trained Audiologist
Pure Tone Audiometry

Sound Proof Booth (absolute levels)
Pure Tone Audiometry

Full Audiogram

Hearing Thresholds
Screening Context

![Diagram of a person being tested for hearing thresholds.](image)

![Graph showing hearing thresholds for different frequencies.](image)
Screening Context

No Sound Proof Booth → Ambient Noise Levels!
Screening Context

Detection Thresholds
Screening Context

Other screening methods should be considered: **supra-threshold tests**
SPIN-test / Digit Triplet Test

De gehoorstest

Jouw LINKER oor wordt nu getest.

Reeks: 27/27

- Geef telkens drie cijfers in en klik daarna op Ok.
- Indien je niets hebt verstaan, moet je gokken.
- Je kunt een fout corrigeren door op de rode knop te tikken.

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

→ 0 OK

“245” = 245

“245” = 235

Jansen (2013)
SPIN-test / Digit Triplet Test

Test Outcomes
- **Speech Reception Threshold (SRT)**: SNR with 50% prob. for correct identification
- **Standard Deviation (SD)**: stability/reliability of measurement

\[
SRT = \frac{\sum_{i=7}^{28} SNR_i}{22} \quad SD = \sqrt{\frac{1}{22} \sum_{i=7}^{28} (SNR_i - SRT)^2}
\]

Jansen (2013)
Advantages

No test-administrator / Low-cost equipment
Advantages

No sound-proof booth (relative levels)
Advantages
Sofie Jansen (2013)

- Test development
 - Normative values

- Test validation
 - Sensitivity & specificity for NIHL = 90%
 - Test-retest reliability = 0.7 dB

- Feasibility in 5E & 1E
Previous Research

Sofie Jansen (2013)

- Test development
 - Normative values

- Test validation
 - Sensitivity & specificity for NIHL = 90%
 - Test-retest reliability = 0.7 dB

- Feasibility in 5E & 1E

Sam Denys (ongoing)
Previous Research

Sofie Jansen (2013)

• Test development
 o Normative values

• Test validation
 o Sensitivity & specificity for NIHL = 90%
 o Test-retest reliability = 0.7 dB

• Feasibility in 5E & 1E

Sam Denys (ongoing)

• Application to SHS: 5E & 3S
 o Normative values & referral criteria

Next talk
Previous Research

Sofie Jansen (2013)

- Test development
 - Normative values

- Test validation
 - Sensitivity & specificity for NIHL = 90%
 - Test-retest reliability = 0.7 dB

- Feasibility in 5E & 1E

Sam Denys (ongoing)

- Application to SHS: 5E & 3S
 - Normative values & referral criteria

- Test Optimization
 - Digit Scoring Method

Optimizing the Digit Triplet Test for Mobile Devices and the Internet (under review)
Previous Research

Sofie Jansen (2013)

- Test development
 - Normative values

- Test validation
 - Sensitivity & specificity for NIHL = 90%
 - Test-retest reliability = 0.7 dB

- Feasibility in 5E & 1E

Sam Denys (ongoing)

- Application to SHS: 5E & 3S
 - Normative values & referral criteria

- Test Optimization
 - Digit Scoring Method

- Feasibility in 1E
 - Influence of cognitive abilities

Manuscript in prep.
Previous Research

Sofie Jansen (2013)

- Test development
 - Normative values

- Test validation
 - Sensitivity & specificity for NIHL = 90%
 - Test-retest reliability = 0.7 dB

- Feasibility in 5E & 1E

Sam Denys (ongoing)

- Application to SHS: 5E & 3S
 - Normative values & referral criteria

- Test Optimization
 - Digit Scoring Method

- Feasibility in 1E
 - Influence of cognitive abilities

- Development of other tests for SES
 - Digit Triplet Pirates Game (intelligent game)
Previous Research

Sofie Jansen (2013)

- Test development
 - Normative values
- Test validation
 - Sensitivity & specificity for NIHL = 90%
 - Test-retest reliability = 0.7 dB
- Feasibility in 5E & 1E

Sam Denys (ongoing)

- Application to SHS: 5E & 3S
 - Normative values & referral criteria
- Test Optimization
 - Digit Scoring Method
- Feasibility in 1E
 - Influence of cognitive abilities
- Development of other tests for SES
 - Digit Triplet Pirates Game (intelligent game)
 - Sound Ear Check
Previous Research

Sofie Jansen (2013)

• Test development
 o Normative values

• Test validation
 o Sensitivity & specificity for NIHL = 90%
 o Test-retest reliability = 0.7 dB

• Feasibility in 5E & 1E

Sam Denys (ongoing)

• Application to SHS: 5E & 3S
 o Normative values & referral criteria

• Test Optimization
 o Digit Scoring Method

• Feasibility in 1E
 o Influence of cognitive abilities

• Development of other tests for SES
 o Digit Triplet Pirates Game (intelligent game)
 o Sound Ear Check
School-Age Hearing Screening in Flanders

3-4 yrs
risk analysis (→ AUDIO_{1+4kHz})

5-6 yrs
SPIN-test??

10-11 yrs
SPIN-test

14-15 yrs
SPIN-test
School-Age Hearing Screening in Flanders

3-4 yrs
risk analysis (→ AUDIO\(_{1+4kHz}\))

5-6 yrs
SPIN-test??

10-11 yrs
SPIN-test

14-15 yrs
SPIN-test

3-4 yrs
working memory

5-6 yrs
short-term memory

10-11 yrs
Other confounders

14-15 yrs
attention span

KU LEUVEN
School-Age Hearing Screening in Flanders

Challenges:

- 3-4 yrs: risk analysis (→ AUDIO$_{1+4kHz}$)
- 5-6 yrs: SPIN-test??
- 10-11 yrs: SPIN-test
- 14-15 yrs: SPIN-test

Note: The diagram shows a flowchart indicating different hearing screening tests for different age groups.
School-Age Hearing Screening in Flanders

Challenges:

3-4 yrs
risk analysis (→ AUDIO$^\text{1+4kHz}$)

5-6 yrs
SPIN-test??

10-11 yrs
SPIN-test

14-15 yrs
SPIN-test
School-Age Hearing Screening in Flanders

3-4 yrs risk analysis (\rightarrow AUDIO$_{1+4kHz}$)

5-6 yrs SPIN-test??

10-11 yrs SPIN-test

14-15 yrs SPIN-test

Challenges:

- Attention span
- Short-term memory
- Other confounders
- Language

KU LEUVEN
School-Age Hearing Screening in Flanders

- **3-4 yrs:** risk analysis (→ AUDIO$_{1+4kHz}$)
- **5-6 yrs:** SPIN-test??
- **5-6 yrs:** SPIN-test
- **10-11 yrs:** SPIN-test
- **14-15 yrs:** SPIN-test

Challenges:

- attention span
- short-term memory
- Other confounders
- Language
Intermezzo: Psychometric Functions

\[\text{Intelligibility} = \frac{100}{100 + e^{4 \cdot \text{slope} \cdot (\text{SRT} - \text{SNR})}} \]

![Graph showing the relationship between SNR and intelligibility score. The graph includes data points for SRT = -9.7 [dB] and S_{50} = 24.9 [%/dB].]
Intermezzo: Psychometric Functions

Intelligibility = \frac{100}{100 + e^{4 \text{slope} \cdot (SRT - SNR)}}
Intermezzo: Psychometric Functions

Intelligibility = \frac{100}{100 + e^{4 \cdot \text{slope} \cdot (\text{SRT} - \text{SNR})}}

![Graph showing the relationship between intelligibility and SNR. The graph includes the SRT value of -9.7 dB, the slope value of 24.9 [%/dB], and the 25% intelligibility threshold. The 1 dB change in SNR is also indicated.]
Intermezzo: Psychometric Functions

Adaptive: 2-up 1-down

Adaptive: 1-up 1-down

![Graph showing psychometric function](image)

Intelligibility score [%] vs SNR [dB]

SRT = -9.7 [dB]

$S_{50} = 24.9$ [%/dB]
Sound Ear Check (SEC): adaptive sounds-in-noise test

Test Outcomes

- **Sound Reception Threshold (SRT)**: SNR with 50% prob. for correct identification
- **Standard Deviation (SD)**: stability/reliability of measurement

\[
SRT = \frac{\sum_{i=9}^{25} SNR_i}{17} \\
SD = \sqrt{\frac{1}{17} \sum_{i=9}^{25} (SNR_i - SRT)^2}
\]
Test Development: a 3 Step Process

Step 1: selection and preparation of sound & noise material

Spectro-temporal analysis & factor analysis
31 sounds (database UMC Leiden) & 8 words
Test Development: a 3 Step Process

Step 1: selection and preparation of sound & noise material

Selection of sounds that resemble speech
Originally 9 sounds
Test Development: a 3 Step Process

Step 1: selection and preparation of sound & noise material

Generation of broadband sound masker
Test Development: a 3 Step Process

Step 2: perceptual optimization [background]

Reduce spread in item-specific SRTs: item-specific level adjustments

→ Steep slope
Test Development: a 3 Step Process

Step 2: perceptual optimization [method]

- **2 optimization waves + validation of level adjustments**
 - **Participants**: N = 10 normal hearing adults per experiment
 - **Materials**:
 - Laptop connected to external soundcard (FireFace UC) & HDA200 headphones
 - Stimuli were monaurally presented via APEX 3.1 software
 - **Analysis**: PI-curves were fitted per sound, averaged across participants

- **Procedure Wave 1**
 - 6 random presentations per sound @ different SNRs
 - SNRs tested: 0, -5, -8, -10, -12, -14, -16, -18 dB SNR (noise @ 65 dB SPL)
 - List at 0 dB SNR was considered as training

- **Procedure Wave 2**
 - Training @ 0 dB SNR: 3 random presentations of each sound + feedback (👍👍)
 - 2x6 presentations per sound @ different SNRs (latin-squared randomized)
 - SNRs tested: -9, -11, -13, -15, -17 dB SNR (noise @ 65 dB SPL)

- **Procedure Validation** = procedure Wave 2
Test Development: a 3 Step Process

Step 2: perceptual optimization [results]

- Item-specific level adjustments were iteratively done
 - After Wave 1 adjustments varied between -1.9 and +1.5 dB
 - After Wave 2 adjustments varied between -0.5 and +0.5 dB

- Final adjustments:

<table>
<thead>
<tr>
<th>Sound</th>
<th>Adj. (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baby</td>
<td>-1.6</td>
</tr>
<tr>
<td>Claxon</td>
<td>-1.8</td>
</tr>
<tr>
<td>Hond</td>
<td>-0.7</td>
</tr>
<tr>
<td>Kat</td>
<td>-2.8</td>
</tr>
<tr>
<td>Piano</td>
<td>-1.2</td>
</tr>
<tr>
<td>Telefoon</td>
<td>-2.5</td>
</tr>
<tr>
<td>Torenklok</td>
<td>-4.3</td>
</tr>
<tr>
<td>Vogel</td>
<td>-11.0</td>
</tr>
</tbody>
</table>

SRT = -13.0 +/- 0.5 dB
Slope = 14.6 +/- 2.5 %/dB
Test Development: a 3 Step Process

Step 3: final evaluation [method]

• Participants:
 - N = 10 normal hearing adults
 - N = 14 normal hearing children (5-6 yrs old)

• Materials:
 - Laptop connected to external soundcard (FireFace UC) & HDA200 headphones
 - Stimuli were monaurally presented via APEX 3.1 software

• Procedure:
 - Pure Tone Audiometry (adults) & PTA$_{1-4kHz}$ (children)
 - SEC Training:
 • 3 random presentations of each sound
 • @ 0 dB SNR (noise fixed @ 65 dB SPL)
 • Feedback (✔️✔️)
 - 2-up 1-down procedure: test-retest

Goal: obtain reference data & quantify test precision
Test Development: a 3 Step Process

Step 3: final evaluation [results]

<table>
<thead>
<tr>
<th></th>
<th>Adults (N = 10)</th>
<th>Children (N = 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold: SRT (dB SNR)*</td>
<td>-12.6 +/- 1.0</td>
<td>-8.9 +/- 1.3</td>
</tr>
<tr>
<td>Stability: SD (dB SNR)*</td>
<td>1.7 +/- 0.2</td>
<td>1.9 +/- 0.5</td>
</tr>
<tr>
<td>Test duration (min:sec)*</td>
<td>2:07 +/- 0:09</td>
<td>2:58 +/- 0:27</td>
</tr>
<tr>
<td>Precision (dB)</td>
<td>0.6</td>
<td>1.3</td>
</tr>
</tbody>
</table>

*Averaged across test and retest

° 1 ear
SEC Future Research Perspectives

- Test validation:
 - Sensitivity & specificity to detect HL
 - Correlations with Digit Triplet Test

- Pilot results (N = 22 normal hearing & N = 11 hearing impaired adults) are promising
SEC Future Research Perspectives

• EU pilot study (EFAS)
 o Language independancy of SEC
 o Comparison SES methodology with SEC
 o Link NHS result with SEC: prevalence
Thank you!

Contact information: sam.denys@kuleuven.be